Lu Ling, Li Xin, Cheng Guodong, et al. Analysis on the landscape structure of the Heihe River Basin, Northwest China[J]. Acta Ecologica Sinica, 2001, 21(8): 1217-1224, 1393. [卢玲, 李新, 程国栋, 等. 黑河流域景观结构分析[J]. 生态学报, 2001, 21(8): 1217-1224, 1393.]
[2]
Chen Rensheng, Lü Shihua, Kang Ersi, et al. A distributed water-heat coupled(DWHC) model for mountainous watershed of an inland river basin(Ⅰ): Model structure and equations[J]. Advances in Earth Science, 2006, 21(8): 806-818. [陈仁升, 吕世华, 康尔泗, 等. 内陆河高寒山区流域分布式水热耦合模型(Ⅰ): 模型原理[J]. 地球科学进展, 2006, 21(8): 806-818.]
[3]
Chen Rensheng, Lü Shihua, Kang Ersi, et al. A distributed water-heat coupled(DWHC) model for mountainous watershed of an inland river basin(Ⅱ): Model results using the measured data at the meteorological & hydrological stations[J]. Advances in Earth Science, 2006, 21(8): 819-829. [陈仁升, 吕世华, 康尔泗, 等. 内陆河高寒山区流域分布式水热耦合模型(Ⅱ): 地面资料驱动结果[J]. 地球科学进展, 2006, 21(8): 819-829.]
[4]
Chen Rensheng, Gao Yanhong, Kang Ersi, et al. A distributed water-heat coupled(DWHC) model for mountainous watershed of an inland river basin(Ⅲ): Model results using the results from MM5 model[J]. Advances in Earth Science, 2006, 21(8): 830-837. [陈仁升, 高艳红, 康尔泗, 等. 内陆河高寒山区流域分布式水热耦合模型(Ⅲ): MM5嵌套结果[J]. 地球科学进展, 2006, 21(8): 830-837.]
[5]
Wang L, Koike T, Yang K, et al. Frozen soil parameterization in a distributed biosphere hydrological model[J]. Hydrology and Earth System Sciences, 2010, 14: 557-571.
[6]
Gao Yanhong, Cheng Guodong, Cui Wenrui, et al. Coupling of enhanced land surface hydrology with atmospheric mesoscale model and its implement in Heihe River Basin[J]. Advances in Earth Science, 2006, 21(12): 1283-1292, 1394. [高艳红, 程国栋, 崔文瑞, 等. 陆面水文过程与大气模式的耦合及其在黑河流域的应用[J]. 地球科学进展, 2006, 21(12): 1283-1292, 1394.]
[7]
Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design[J]. Advances in Earth Science, 2008, 23(9): 897-914.[李新, 马明国, 王建, 等. 黑河流域遥感-地面观测同步试验: 科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.]
[8]
Li X, Li X W, Li Z Y, et al. Watershed allied telemetry experimental research[J]. Journal of Geophysical Research, 2009, 114(D22103), doi: 10.1029/2008JD011590.
[9]
Chen F, Janjié Z, Mitchell K. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model[J]. Boundary-Layer Meteorology, 1997, 85(3): 391-421.
[10]
Kato H, Rodell M, Beyrich F, et al. Sensitivity of land surface simulations to model physics, land characteristics, and forcings, at four CEOP sites[J]. Journal of the Meteorological Society of Japan, 2007, 85A: 187-204.
[11]
Ma Yaoming, Tsukamoto O, Wang Jiemin, et al. Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J]. Progress in Natural Science, 2002, 12(1): 36-40.
[12]
Barlage M, Chen F, Tewari M, et al. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2010, 115(D22), doi: 10.1029/2009JD013470.
[13]
Yang K, Chen Y Y, Qin J. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2009, 13(5): 687-701.
[14]
Yang K, Koike T, Ishikawa H, et al. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization[J]. Journal of Applied Meteorology and Climatology, 2008, 47(1): 276-290.
[15]
Chen Y, Yang K, Zhou D, et al. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length[J]. Journal of Hydrometeorology, 2010, 11(4): 995-1006.
[16]
van der Velde R, Su Z, Ek M, et al. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site[J]. Hydrology and Earth System Sciences, 2009, 13(6): 759-777.
[17]
Wang Jian, Che Tao, Li Hongyi, et al. WATER: Dataset of automatic meteorological observations at the Dadongshu mountain pass snow observation station. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2008, doi: 10.3972/water973.0295.db. [王建, 车涛, 李弘毅, 等. 黑河综合遥感联合试验: 大冬树山垭口积雪观测站自动气象站数据集. 中国科学院寒区旱区环境与工程研究所, 2008, doi: 10.3972/water973.0295.db.]
[18]
Hu Zeyong, Ma Mingguo, Jin Rui, et al. WATER: Dataset of automatic meteorological observations at the A'rou freeze/thaw observation station[DB/OL]. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2008, doi: 10.3972/water973.0279.db. [胡泽勇, 马明国, 晋锐, 等. 黑河综合遥感联合试验: 阿柔冻融观测站自动气象站数据集. 中国科学院寒区旱区环境与工程研究所, 2008, doi: 10.3972/water973.0279.db.]
[19]
Huang Guanghui, Ma Mingguo, Tan Junlei, et al. Data quality control and products of automatic weather stations for watershed allied telemetry experimental research[J]. Remote Sensing Technology and Application, 2010, 25(6): 814-820. [黄广辉, 马明国, 谭俊磊, 等. 黑河综合遥感联合试验自动气象站数据质量控制与产品生成[J]. 遥感技术与应用, 2010, 25(6): 814-820.]
[20]
Ek M, Mahrt L. OSU 1-D PBL Model User's Guide[M]. Dep. of Atmos. Sci., Oreg. State Univ., Corvallis, 1991.
[21]
Mahrt L, Ek M. The influence of atmospheric stability on potential evaporation[J]. Journal of Climate and Applied Meteorology, 1984, 23: 222-234.
[22]
Mahrt L, Pan H. A two-layer model of soil hydrology[J]. Boundary-Layer Meteorology, 1984, 29(1): 1-20.
[23]
Pan H-L, Mahrt L. Interaction between soil hydrology and boundary-layer development[J]. Boundary-Layer Meteorology, 1987, 38(1-2): 185-202.
[24]
Schaake J C, Koren V I, Duan Q Y, et al. Simple water balance model for estimating runoff at different spatial and temporal scales[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1996, 101(D3): 7461-7475.
[25]
Koren V, Schaake J, Mitchell K, et al. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models[J]. Journal of Geophysical Research, 1999, 104(D16): 19569-19585.
[26]
Ek M B, Mitchell K E, Lin Y, et al. Implementation of Noah land surface model advancements in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2003, 108(D22), doi: 10.1029/2002JD003296.
[27]
Bao Yan, Lü Shihua, Zuo Hongchao, et al. Application of Regional Climate Model(RegCM3) in Northwest China II: Sensitivity experiment for domain choice and cumulus convection parameterization[J]. Journal of Glaciology and Geocryology, 2006, 28(2): 175-182. [鲍艳, 吕世华, 左洪超, 等. RegCM3模式在西北地区的应用研究Ⅱ: 区域选择及参数化方案的敏感性[J]. 冰川冻土, 2006, 28(2): 175-182.]
[28]
Nan Zhuotong, Li Shuxun, Liu Yongzhi. Mean annual ground temperature distribution on the Tibetan Plateau: Permafrost distribution mapping and further application[J]. Journal of Glaciology and Geocryology, 2002, 24(2): 142-148. [南卓铜, 李述训, 刘永智. 基于年平均地温的青藏高原冻土分布制图及应用[J]. 冰川冻土, 2002, 24(2): 142-148.]
[29]
Mitchell K. The Community Noah Land-surface Model (LSM), User’s Guide, Public Release Version 2.7.1[M]. NCEP/EMC, USA, 2005. http://wenku.baidu.com/view/90918568a45177232f60a2b9.html.
[30]
Liston G E, Elder K. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)[J]. Journal of Hydrometeorology, 2006, 7: 217-234.
[31]
Yang Junhua, Qin Xiang, Wu Jinkui, et al. Distribution and variation of spring snow cover in Laohugou watershed of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1091-1098. [杨俊华, 秦翔, 吴锦奎, 等. 祁连山老虎沟流域春季积雪属性的分布及变化特征[J]. 冰川冻土, 2012, 34(5): 1091-1098.]
[32]
Yang K, Koike T, Ye B, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2005, 110(D8), doi: 10.1029/2004JD005500.
[33]
Jin Ming, Li Yi, Liu Xiande, et al. Interannual variation characteristics of seasonal frozen soil in upper middle reaches of Heihe River in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1068-1073. [金铭, 李毅, 刘贤德, 等. 祁连山黑河中上游季节冻土年际变化特征分析[J]. 冰川冻土, 2011, 33(5): 1068-1073.]
[34]
Li Hongyi, Wang Jian, Hao Xiaohua. Influence of blowing snow on snow mass and energy exchanges in the Qilian Mountainous[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1084-1090. [李弘毅, 王建, 郝晓华. 祁连山区风吹雪对积雪质能过程的影响[J]. 冰川冻土, 2012, 34(5): 1084-1090.]