全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

基于HJ-CCD影像数据的新疆喀纳斯自然保护区植被叶面积指数估算

DOI: 10.7522/j.issn.1000-0240.2013.0101, PP. 892-903

Keywords: HJ-CCD影像,大气订正,LAI遥感估算,6S模型,FLAASH模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

以新疆喀纳斯自然保护区为研究区,评价了HJ-CCD影像数据估算植被叶面积指数(LAI)的能力及其对大气订正方法的敏感性.分别利用6S和FLAASH两种大气订正模型对HJ1B-CCD2影像进行大气订正,比较了大气订正前后不同植被(针叶林、阔叶林、针阔混交林和草地)反射率及5种植被指数(NDVI、SR、SAVI、MSR、ARVI)的变化,进而建立了4种植被类型LAI的遥感估算模型,分析了LAI的空间分布格局.结果表明大气订正后可见光波段的反射率降低,6S模型订正后近红外波段的反射率上升,而FLAASH模型订正后近红外波段的反射率下降.大气订正后NDVI、SR、SAVI(除针叶林)和MSR上升,6S模型订正后所有植被类型的ARVI下降,FLAASH模型订正后针叶林和阔叶林的ARVI上升,而针阔混交林和草地的ARVI下降.大气订正提高了植被指数与LAI之间的相关性,对于针叶林、阔叶林、针阔混交林而言,利用6S模型订正后的反射率建立的模型优于FLAASH模型订正后的反射率建立的模型,而草地却相反.经过大气订正,HJ-CCD影像数据可应用于研究区植被LAI的估算.研究区LAI的高值集中在湖泊和河流附近,低值分布在海拔较高处.山地森林草原带、亚高山森林带、高山灌丛草甸带、高山冻原、高山冰川带植被LAI的平均值分别为2.6、3.9、2.5、1.7和1.0.

References

[1]  He Yongqi, Huang Xiaodong, Fang Jin, et al. Snow cover mapping algorithm based on HJ-1B satellite data [J]. Journal of Glaciology and Geocryology, 2013, 35(1): 65-73. [何咏琪, 黄晓东, 方金, 等. 基于HJ-1B卫星数据的积雪面积制图算法研究[J]. 冰川冻土, 2013, 35(1): 65-73.]
[2]  Chen J M, Black T A. Defining leaf area index for non-flat leaves [J]. Plant, Cell & Environment, 1992, 15(4): 421-429.
[3]  Zhang Na, Yu Guirui, Zhao Shidong, et al. Ecosystem productivity process model for landscape based on remote sensing and surface data[J]. Chinese Journal of Applied Ecology, 2003, 14(5): 643-652. [张娜, 于贵瑞, 赵士洞, 等. 基于遥感和地面数据的景观尺度生态系统生产力的模拟[J]. 应用生态学报, 2003, 14(5): 643-652.]
[4]  Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs[J]. Remote Sensing of Environment, 1997, 62(2): 158-175.
[5]  Fang Xiuqin, Zhang Wanchang, Liu Sanchao. The estimation of LAI in Heihe River Basin using remotely sensed data[J]. Remote Sensing for Land & Resources, 2004(1): 27-31.
[6]  Eklundh L, Harrie L, Kuusk A. Investigating relationships between Landsat ETM+ sensor data and leaf area index in a boreal conifer forest[J]. Remote Sensing of Environment, 2001, 78(3): 239-251.
[7]  Chen Xinfang, Chen Jingming, An Shuqing, et al. Comparison of different atmospheric correction models in their effects on Landsat TM estimation of forest leaf area index [J]. Chinese Journal of Ecology, 2006, 25(7): 769-773. [陈新芳, 陈镜明, 安树青, 等. 不同大气校正方法对森林叶面积指数遥感估算影响的比较[J]. 生态学杂志, 2006, 25(7): 769-773.]
[8]  Qi Xueyong, Tian Qingjiu. The advances in the study of atmospheric correction for optical remote sensing[J]. Remote Sensing for Land & Resources, 2005(4): 1-6.
[9]  Jiang Heli, Zhao Jingdong, Yin Xiufeng, et al. New OSL ch-ronology of the Last Glaciation in Kanas River valley, Altay Mountains, China[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 304-310. [江合理, 赵井东, 殷秀峰, 等. 阿尔泰山喀纳斯河流域末次冰期OSL年代学新证[J]. 冰川冻土, 2012, 34(2): 304-310.]
[10]  Wang Xianpu, Yu Shunli, Tang Dayou. The heritage value of mountain vertical zonation in temperate desert region of China [J]. Arid Zone Research, 2009, 26(5): 694-701. [王献溥, 于顺利, 汤大友. 中国温带荒漠山地垂直地带性的遗产价值[J]. 干旱区研究, 2009, 26(5): 694-701.]
[11]  Yuan Guoying. The vertical zonation of the western Altay Mts.[J]. Acta Geographica Sinica, 1986, 41(1): 32-40. [袁国映. 阿尔泰山西部地区的垂直自然带[J]. 地理学报, 1986, 41(1): 32-40.]
[12]  Anwar Tumur, Abdulla Abbas. Floor lichen diversity under different vegetation types in Two-river Source Nature Reserve in Altay Mountains, Xinjiang[J]. Biodiversity Science, 2006, 14(5): 444-450. [艾尼瓦尔·吐米尔, 阿不都拉·阿巴斯. 新疆阿勒泰山两河源自然保护区地面生地衣的物种多样性[J]. 生物多样性, 2006, 14(5): 444-450.]
[13]  Liu Yafeng, You Haitao, Xing Yongjian. A study on adjusting and controlling to tourism environmental carrying capacity-a case of Kanas Nature Reserve[J]. Journal of Shanxi Normal University (Natural Science Edition), 2006, 20(3): 78-83. [刘亚峰, 尤海涛, 邢永建. 旅游景区环境容量调控研究——以喀纳斯自然保护区为例[J]. 山西师范大学学报(自然科学版), 2006, 20(3): 78-83.]
[14]  Wang Guoya, Mao Weiyi, He Bin, et al. Changes in snow covers during 1961-2011 and its effects on frozen ground in Altay region, Xinjiang[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1293-1300. [王国亚, 毛炜峄, 贺斌, 等. 新疆阿勒泰地区积雪变化特征及其对冻土的影响[J]. 冰川冻土, 2012, 34(6): 1293-1300.]
[15]  He Bin, Wang Guoya, Su Hongchao, et al. Response of extreme hydrological events to climate change in the regions of Altay Mountains, Xinjiang [J]. Journal of Glaciology and Geocryology, 2012, 34(4): 927-933. [贺斌, 王国亚, 苏宏超, 等. 新疆阿尔泰山地区极端水文事件对气候变化的响应[J]. 冰川冻土, 2012, 34(4): 927-933.]
[16]  Lei Yu, Long Aihua, Deng Mingjiang, et al. Analyses of the climate change and its impact on water resources in the middle reaches of Irtysh River during 1926-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 912-919. [雷雨, 龙爱华, 邓铭江, 等. 1926-2009年额尔齐斯河流域中游地区气候变化及其对水资源的影响分析[J]. 冰川冻土,2012, 34(4): 912-919.]
[17]  Zhang Huihui, Pan Cunde, Bazhaerbiekd Asiliehan, et al. Altitudinal changes of forest community types and species diversity in Kanasi tourism region[J]. Xinjiang Agricultural Sciences, 2008, 45(2): 225-231. [张荟荟, 潘存德, 巴扎尔别克·阿斯勒汗, 等. 喀纳斯旅游区森林群落类型及其物种多样性随海拔梯度的变化[J]. 新疆农业科学, 2008, 45(2): 225-231.]
[18]  Zhu Gaolong, Ju Weimin, Fan Wenyi,et al. Forest canopy leaf area index in Maoershan Mountain: Ground measurement and remote sensing retrieval[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 2117-2124. [朱高龙, 居为民, 范文义, 等. 帽儿山地区森林冠层叶面积指数的地面观测与遥感反演[J]. 应用生态学报, 2010, 21(8): 2117-2124.]
[19]  Liu Yibo, Ju Weimin, Zhu Gaolong, et al. Retrieval of leaf area index for different grasslands in Inner Mongolia prairie using remote sensing data[J]. Acta Ecologica Sinica, 2011, 31(18): 5159-5170. [柳艺博, 居为民, 朱高龙, 等. 内蒙古不同类型草地叶面积指数遥感估算[J]. 生态学报, 2011, 31(18): 5159-5170.]
[20]  Chen J M, Govind A, Sonnentag O,et al. Leaf area index measurements at Fluxnet-Canada forest sites[J]. Agricultural and Forest Meteorology, 2006, 140(1/4): 257-268.
[21]  Wei Yuchun, Huang Jiazhu. The gains/biases values and their effects on the calculation results of planetary renectance in Landsat-5 image[J]. Geo-Information Science, 2006, 8(1): 110-113, 126. [韦玉春, 黄家柱. Landsat5图像的增益、偏置取值及其对行星反射率计算分析[J]. 地球信息科学, 2006, 8(1): 110-113, 126.]
[22]  Markham B L, Barker J L. Thematic Mapper bandpass solar exoatmospheric irradiances[J]. International Journal of Remote Sensing, 1987, 8(3): 517-523.
[23]  Chi Hongkang, Zhou Guangsheng, Xu Zhenzhu,et al. Apparent reflectance and its applications in vegetation remote sensing[J]. Acta Phytoecologica Sinica, 2005, 29(1): 74-80. [池宏康, 周广胜, 许振柱, 等. 表观反射率及其在植被遥感中的应用[J]. 植物生态学, 2005, 29(1): 74-80.]
[24]  Fan Wenyi, Sun Xiaofang, Wang Yan, et al. Atmospheric correction of remote sensing data based on two radiative transfer models and contrast analysis of the results[J]. Journal of Northeast Forestry University, 2009, 37(7): 121-124. [范文义, 孙晓芳, 王岩, 等. 基于两种辐射传输模型的遥感数据大气校正及结果对比分析[J]. 东北林业大学学报, 2009, 37(7): 121-124.]
[25]  Wu Beiying, Li Wei, Chen Hongbin, et al. Practical Algorithm for Atmospheric Radiative Transfer[M]. Beijing: China Meteorological Press, 1998: 52-60.
[26]  Rouse Jr J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[C]//Freden S C, Mercanti E P, Becker M A. Proceedings of Third Earth Resources Technology Satellite-1 Symposium, Vol. 1: Technical Presentations. NASA SP-351. Washington: NASA, 1974: 309-317.
[27]  Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
[28]  Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forest using Landsat TM images[J]. Remote Sensing of Environment, 1996, 55(2): 153-162.
[29]  Zhao Yingshi. Theory and Method of Remote Sensing Application Analysis[M]. Beijing: Science Press, 2003: 366-372.
[30]  Tang Cuiwen, Su Yanke, Wang Guoya, et al. Vertical zonation of alpine soil processes in Zhagana area of Diebu, Gansu Province[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 84-92. [汤萃文, 苏研科, 王国亚, 等. 甘肃迭部扎尕那地区山地土壤过程的垂直分带性研究[J]. 冰川冻土, 2013, 35(1): 84-92.]
[31]  Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133