Nicolsky D J, Romanovsky V E, Panteleev G G. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost[J]. Cold Regions Science and Technology, 2009, 55(1): 120-129.
[2]
Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis [M]. Cambridge, UK: Cambridge University Press, 2001: 1-79.
[3]
Wu Qingbai, Zhu Yuanlin, Liu Yongzhi. Evaluating model of frozen soil environment change under engineering actions [J]. Science in China (Series D: Earth Sciences), 2002, 45(10): 893-902. [吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学(D辑: 地球科学), 2002, 32(2): 141-148.]
[4]
Cheng Guodong, He Ping. Linearity engineering in permafrost areas [J]. Journal of Glaciology and Geocryology, 2001, 23(3): 213-217. [程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217.]
[5]
Li Shuxun, Cheng Guodong. Numerical simulation of the future change of thermal regime in the high temperature permafrost of Qinghai-Xizang Plateau under climate warming [J]. Journal of Glaciology and Geocryology, 1996, 18(S1): 190-196. [李述训, 程国栋. 气候变暖条件下青藏高原高温冻土热状况变化趋势数值模拟[J]. 冰川冻土, 1996, 18(S1): 190-196.]
[6]
Yang Chengsong,Cheng Guodong.Probabilistic prediction of the impacts of climate change on permafrost stability along the Qinghai-Tibet Railway (I): Active layer thickness and ground temperature[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 461-468. [杨成松, 程国栋. 气候变化条件下青藏铁路沿线多年冻土概率预报(I): 活动层厚度与地温[J]. 冰川冻土, 2011, 33(3): 461-468.]
[7]
Pang Qiangqiang, Li Shuxun, Wu Tonghua,et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 390-395. [庞强强, 李述训, 吴通华, 等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土, 2006, 28(3): 390-395.]
[8]
Wang Haili. Numerical simulation of moisture and heat transfer during soil freezing[J]. Journal of Inner Mongolia Institute of Agriculture & Animal Husbandry, 1998, 19(1): 99-105. [王海丽. 冻土水热运动的数值模拟[J]. 内蒙古农牧学院学报, 1998, 19(1): 99-105.]
[9]
Shang Songhao, Lei Zhidong, Yang Shixiu. Numerical simulation improvement of coupled moisture and heat transfer during soil freezing[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(8): 62-64. [尚松浩, 雷志栋, 杨诗秀. 冻结条件下土壤水热耦合迁移数值模拟的改进[J]. 清华大学学报(自然科学版), 1997, 37(8): 62-64.]
Lu Yingfa, Wu Yanchun, Yang Liping, et al. Investigation on determination of thermodynamical parameters of unsaturated soil[J]. Rock and Soil Mechanics, 2008, 29(7): 1747-1752. [卢应发, 吴延春, 杨丽平, 等. 非饱和土热力学参数确定的探讨[J]. 岩土力学, 2008, 29(7): 1747-1752.]
[12]
Zhang Xu, Gao Xiaobing, Qin Huimin, et al. An experimental study on heat conductivity coefficients of soil and its mixture with yellow sand[C]//Proceedings of the Biennial Meeting of China's HVAC & R 2000. Beijing: China Architecture & Building Press, 2000: 478-481. [张旭, 高晓兵, 秦慧敏, 等. 土壤及其与黄沙混合物导热系数的实验研究[C]//全国暖通空调制冷2000年学术年会论文集. 北京: 中国建筑工业出版社, 2000: 478-481.]
[13]
Wang Yinxue, Zhao Lin, Li Ren, et al. A study of factors which control variation of permafrost table[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1064-1067. [王银学, 赵林, 李韧, 等. 影响多年冻土上限变化的因素探讨[J]. 冰川冻土, 2011, 33(5): 1064-1067.]
[14]
Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000: 1-450.
[15]
Jin Huijun, Wang Shaoling, Lü Lanzhi,et al. Features and degradation of frozen ground in the sources area of the Yellow River, China [J]. Journal of Glaciology and Geocryology, 2010, 32(1): 10-17. [金会军, 王绍令, 吕兰芝, 等. 黄河源区冻土特征及退化趋势[J]. 冰川冻土, 2010, 32(1): 10-17.]
[16]
Luo Dongliang, Jin Huijun, Lin Lin, et al. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 538-546. [罗栋梁, 金会军, 林琳, 等. 青海高原中、东部多年冻土及寒区环境退化[J]. 冰川冻土, 2012, 34(3): 538-546.]
[17]
Wu Jichun, Sheng Yu, Wu Qingbai,et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau [J]. Science in China (Series D: Earth Sciences), 2010, 53(1): 150-158. [吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式[J]. 中国科学(D辑: 地球科学), 2009, 39(11): 1570-1578.]
[18]
Yang Jianping, Ding Yongjian, Chen Rensheng. NDVI reflection of alpine vegetation changes in the source regions of the Yangtze and Yellow Rivers[J]. Acta Geographica Sinica, 2005, 60(3): 467-478. [杨建平, 丁永建, 陈仁升. 长江黄河源区高寒植被变化的NDVI记录[J]. 地理学报, 2005, 60(3): 467-478.]
[19]
Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 250-255. [吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.]
[20]
Yang Jianping, Ding Yongjian, Chen Rensheng. Climatic causes of ecological and environmental variations in the source regions of the Yangtze and Yellow Rivers of China[J]. Environmental Geology, 2007, 53(1): 113-121.
[21]
Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China (Series D: Earth Sciences), 2005, 48(6): 797-804. [南卓铜, 李述训, 程国栋. 未来50与100 a青藏高原多年冻土变化情景预测[J]. 中国科学(D辑: 地球科学), 2004, 34(6): 528-534.]
[22]
Zhang Yanjun, Yu Ziwang, Huang Rui, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 213-217. [张延军, 于子望, 黄芮, 等. 岩土热导率测量和温度影响研究[J]. 岩土工程学报, 2009, 31(2): 213-217.]
[23]
Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511. [张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511.]
[24]
USSR Academy of Sciences. Siberian Branch. Permafrost Institute. General Geocryology [M]. Guo Dongxin, Liu Tieliang, Zhang Weixin, et al.trans. Beijing: Science Press, 1988: 1-318.
[25]
Xu Xiaozu, Deng Yousheng. Experimental Study on Water Migration in Freezing and Frozen Soils [M]. Beijing: Science Press, 1991: 83-86. [徐学攵祖, 邓友生. 冻土中水分迁移的实验研究[M]. 北京: 科学出版社, 1991: 83-86.]
[26]
Bai Lei, Li Lanhai, Li Qian, et al. Relationship between soil's seasonal freezing process and daily accumulative hourly temperature in northern Xinjiang region[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 328-335. [白磊, 李兰海, 李倩, 等. 新疆北疆地区季节性冻土结冻过程与日积温的关系[J]. 冰川冻土, 2012, 34(2): 328-335.]
[27]
Li Shuxun, Cheng Guodong. Issue of Heat and Water Transfer in Frozen-Unfrozen Soils [M]. Lanzou: Lanzhou University Press, 1995: 1-203.
[28]
Nan Zuotong, Li Shuxun, Cheng Guodong, et al. Surface frost number model and its application to the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2012, 34(1): 89-95.[南卓铜, 李述训, 程国栋, 等. 地面冻结数模型及其在青藏高原的应用[J]. 冰川冻土, 2012, 34(1): 89-95.]
[29]
Nelson F E, Outcalt S I. A computational method for prediction and regionalization of permafrost[J]. Arctic and Alpine Research, 1987, 19(3): 279-288.
[30]
Liang Sihai, Wan Li, Li Zhiming, et al. The effect of permafrost on alpine vegetation in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 45-52. [梁四海, 万力, 李志明, 等. 黄河源区冻土对植被的影响[J]. 冰川冻土, 2007, 29(1): 45-52.]
[31]
Cao Wenbing, Wan Li, Zhou Xun, et al. A study of the geological environment of suprapermafrost water in the headwater area of the Yellow River[J]. Hydrogeology and Engineering Geology, 2003(6): 6-10.[曹文炳, 万力, 周训, 等. 黄河源区冻结层上水地质环境影响研究[J]. 水文地质工程地质, 2003(6): 6-10.]