全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

我国主要积雪区AMSR-E被动微波雪深算法对比验证研究

DOI: 10.7522/j.issn.1000-0240.2013.0091, PP. 801-813

Keywords: 被动微波,雪深,AMSR-E,对比验证,中国

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用高级微波扫描辐射计(AMSR-E)亮温数据,选取Chang算法、GSFC96算法、AMSR-ESWE算法、青藏高原改进算法和Savoie算法等5种雪深反演算法,利用2010年2月10-12日3d的气象站台雪深观测数据,对比分析了5种雪深反演算法在新疆地区、青藏高原、内蒙古地区、东北地区、西北地区和华北平原的精度和适用性.结果表明总体验证中,青藏高原改进算法3d的结果均优于其他算法,其均方根误差(RMSE)为9.16cm、9.96cm和9.63cm,平均相对误差(MRE)分别为59.77%、52.79%和48.47%.分区验证中,结果最佳的算法分别为在新疆地区,GSFC96算法RMSE为6.85~7.48cm;内蒙古地区,青藏高原改进算法的RMSE分别为5.9cm、6.11cm和5.46cm;东北地区,青藏高原改进算法RMSE为6.21~7.83cm;西北地区和华北平原5种算法的适用性不佳;青藏高原由于缺乏实测数据,无法得到该区验证统计结果.

References

[1]  Ma Lijuan, Qin Dahe. Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 1-11. [马丽娟, 秦大河. 1957-2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 2012, 34(1): 1-11.]
[2]  Yang Xingguo, Qin Dahe, Qin Xiang. Progress in the study of interaction between ice/snow and atmosphere [J]. Journal of Glaciology and Geocryology, 2012, 34(2): 392-402. [杨兴国, 秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2): 392-402.]
[3]  Li Xiaolan, Zhang Feimin, Wang Chenghai. Comparison and analysis of snow depth over China, observed and derived from remote sensing [J]. Journal of Glaciology and Geocryology, 2012, 34(4): 755-764. [李小兰, 张飞民, 王澄海. 中国地区地面观测积雪深度和遥感雪深资料的对比分析[J]. 冰川冻土, 2012, 34(4): 755-764.]
[4]  Lu Xinyu, Wang Xiuqin, Cui Caixia, et al. Snow depth retrieval based on AMSR-E data in northern Xinjiang region, China[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 40-47. [卢新玉, 王秀琴, 崔彩霞, 等. 基于AMSR-E的北疆地区积雪深度反演[J]. 冰川冻土, 2013, 35(1): 40-47.]
[5]  Qiu Yubao, Shi Jiancheng, Lemmetyinen J, et al. The atmosphere influence to AMSR-E measurements over snow-covered areas: Simulation and experiments[C]//Proceedings of 2009 IEEE International Geoscience & Remote Sensing Symposium, Vol. II. IEEE, 2009: 610-613.
[6]  Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing: Active and Passive, Volume I: Microwave Remote Sensing Fundamentals and Radiometry [M]. Norwood, MA: Artech House, 1981: 1-456.
[7]  Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of Glaciology, 1987, 9: 39-44.
[8]  Foster J L, Chang A T C, Hall D K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology [J]. Remote Sensing of Environment, 1997, 62: 132-142.
[9]  Luojus K, Pulliainen J, Takala M, et al. Snow Water Equivalent (SWE) Product Guide, ESRIN Contract 21703/08/I-EC[R/OL].[2013-08-06].
[10]  Tong Jinjun, Velicogna I. A comparison of AMSR-E/Aqua snow products with in situ observations and MODIS snow cover products in the Mackenzie River Basin, Canada[J]. Remote Sensing, 2010, 2(10): 2313-2322.
[11]  Kelly R. The AMSR-E snow depth algorithm: description and initial results [J]. Journal of the Remote Sensing Society of Japan, 2009, 29: 307-317.
[12]  Che Tao, Li Xin, Gao Feng. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3): 363-368. [车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3): 363-368.]
[13]  Savoie M H, Armstrong R L, Brodzik M J, et al. Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau [J]. Remote Sensing of Environment, 2009, 113(12): 2661-2669.
[14]  Sun Zhiwen. Estimate Snow Depth and Snow Water Equivalent Algorithm for FY-3 MWRI and Development of System[D]. Master Thesis, Beijing: Beijing Normal University, 2007. [孙知文. 风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发[D]. 硕士论文, 北京: 北京师范大学, 2007.]
[15]  Basang, Yang Xiuhai, Lazhen, et al. Variation of snow cover over Tibet Autonomous Region based on multi-source data[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1023-1030. [巴桑, 杨秀海, 拉珍, 等. 基于多源数据的西藏地区积雪变化趋势分析[J]. 冰川冻土, 2012, 34(5): 1023-1030.]
[16]  Ashcroft P, Wentz F J. AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures, Version 3[DB/OL]. Boulder, CO: NASA DAAC at the National Snow and Ice Data Center, 2013[2013-08-06]. http://dx.doi.org/10.5067/AMSR-E/AE_L2A.003.
[17]  Armstrong R L, Brodzik M J. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave sensors[J]. Geophysical Research Letters, 2001, 28(19): 3673-3676.
[18]  Derksen C, Walker A, Goodison B. Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada [J]. Remote Sensing of Environment, 2005, 96(3): 315-327.
[19]  Dai Liyun, Che Tao, Wang Jian. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127: 14-29.
[20]  Qiu Yubao, Guo Huadong, Shi Jiancheng, et al. Analysis between AMSR-E swath brightness temperature and ground snow depth data in winter time over Tibet Plateau, China[C]//Proceedings of 2010 IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2010: 2367-2370.
[21]  Qiu Yubao, Guo Huadong, Shi Jiancheng, et al. Analysis of the passive microwave high-frequency signal in the shallow snow retrieval[C]//Proceedings of 2011 IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2011: 3863-3866.
[22]  Clifford D. Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments [J]. International Journal of Remote Sensing, 2010, 31(14): 3707-3726.
[23]  Tedesco M, Narvekar P S. Assessment of the NASA AMSR-E SWE product[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1): 141-159.
[24]  Chang A T C, Foster J L, Hall D K, et al. The use of microwave radiometer data for characterizing snow storage in western China [J]. Annals of Glaciology, 1992, 16: 215-219.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133