Li Lin, Wang Zhenyu, Wang Qingchun. Influence of climatic change on flow over the upper reaches of Heihe River[J]. Scientia Geographica Sinica, 2006, 26(1): 40-46. [李林, 王振宇, 汪青春. 黑河上游地区气候变化对径流量的影响研究[J]. 地理科学, 2006, 26(1): 40-46.]
[2]
Zhang Hua, Zhang Bo, Zhao Chuanyan. Annual base flow ch-ange and its causes in the upper reaches of Heihe River[J]. Geographical Research, 2011, 30(8): 1421-1430. [张华, 张勃, 赵传燕. 黑河上游多年基流变化及其原因分析[J]. 地理研究, 2011, 30(8): 1421-1430.]
[3]
Zhang Yulong, Lu Xiaoliang, Yang Chengde. A preliminary st-udy on the isolation and characterization of inorganic phosphate-solubilizing bacteria in soil of alpine grasslands in Eastern Qilian Mountains[J]. Acta Agrestia Sinica, 2011, 19(4): 560-564. [张宇龙, 卢小良, 杨成德. 东祁连山高寒草地土壤无机磷溶解菌分离及溶磷能力初探[J]. 草地学报, 2011, 19(4): 560-564.]
[4]
Balser T C, Wixon D, Moritz L K, et al. Chapter 2: The microbiology of natural soils[M]//Soil Microbiology and Sustainable Crop Production. New York: Springer, 2010: 27-57.
[5]
Chen Dongdong, Zhang Shihu, Du Guozhen. Soil microbial biomass and nitrogen mineralization potential along an altitudinal gradient on the northeastern Tibetan Plateau[J]. Journal of Lanzhou University (Natural Sciences), 2010, 46(3): 86-96. [陈懂懂, 张世虎, 杜国祯. 青藏高原东北缘不同海拔梯度土壤微生物量与氮矿化的潜力[J]. 兰州大学学报(自然科学版), 2010, 46(3): 86-96.]
[6]
Lim B L, Yeung P, Cheng C, et al. Distribution and diversity of phytate-mineralizing bacteria[J]. The ISME Journal, 2007, 1: 321-330.
[7]
Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156: 989-996.
[8]
Lyngwi N A, Koijam K, Sharma D, et al. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya[J]. Revista de Biolog a Tropical, 2013, 61(1): 467-490.
[9]
Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of fre-eze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1499-1507. [张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6): 1499-1507.]
[10]
Li Changming, Zhang Xinfang, Zhao Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 713-725. [李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3): 713-725.]
[11]
Yang Yunfeng, Gao Ying, Wang Shiping, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. The ISME Journal, 2013, 8: 430-440.
[12]
Meng Haojun, Liu Xiande, Jin Ming, et al. Response of edaphon to different vegetation types in Qilian Mountains[J]. Chinese Journal of Soil Science, 2007, 38(6): 1127-1130. [孟好军, 刘贤德, 金铭, 等. 祁连山不同森林植被类型对土壤微生物影响的研究[J]. 土壤通报, 2007, 38(6): 1127-1130.]
[13]
Chen Wei, Zhang Wei, Li Shiweng, et al. Features of soil cultivable microorganism quantity and diversity distribution under different alpine grassland ecosystems in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1419-1426. [陈伟, 张威, 李师翁, 等. 青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究[J]. 冰川冻土, 2011, 33(6): 1419-1426.]
[14]
Wang Weizhen, Wu Yueru, Jin Rui, et al. Analysis of the variation characteristics of soil moisture and soil salinity-Take Arou Pasture in the upper reaches of Heihe River for an example[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 268-274. [王维真, 吴月茹, 晋锐, 等. 冻融期土壤水盐变化特征分析——以黑河上游祁连县阿柔草场为例[J]. 冰川冻土, 2009, 31(2): 268-274.]
[15]
Li Hongyi, Wang Jian, Bai Yunjie, et al. The snow hydrological processes during a representative snow cover period in Binggou watershed in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 293-300. [李弘毅, 王建, 白云洁, 等. 黑河上游冰沟流域典型积雪期水文情势[J]. 冰川冻土, 2009, 31(2): 293-300.]
[16]
Hu Yukun, Li Kaihui, Adeli Maidy, et al. Plant species diversity of alpine grasslands in southern slope of Tianshan Mountain along altitude gradient[J]. Chinese Journal of Ecology, 2007, 26(2): 182-186. [胡玉昆, 李凯辉, 阿德力·麦地, 等. 天山南坡高寒草地海拔梯度上的植物多样性变化格局[J]. 生态学杂志, 2007, 26(2): 182-186.]
[17]
Ding Songshuang, Su Peixi. Altitudinal variation characteristics of the plant community on the upper reaches of Heihe River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 829-836. [丁松爽, 苏培玺. 黑河上游祁连山区植物群落随海拔生境的变化特征[J]. 冰川冻土, 2010, 32(4): 829-836.]
[18]
Bartosch S, Wolgast I, Spieck E, et al. Identification of nitrite-oxidizing bacteria monoclonal antibodies recognizing the nitrite oxidoreductase[J]. Applied and Environmental Microbiology, 1999, 65: 4126-4133.
[19]
Scholten E, Lukow T, Auling G, et al. Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant[J]. International Journal of Systematic Bacteriology, 1999, 49: 1045-1051.
[20]
Malik K A. A new freeze-drying method for the preservation of nitrogen-fixing and other fragile bacteria[J]. Journal of Microbiological Methods, 1988, 8: 259-271.
[21]
Kim Yong-hak, Bae B, Choung Youn-kyoo. Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms[J]. Journal of Bioscience and Bioengineering, 2005, 99: 23-29.
[22]
Patel K J, Singh A K, Nareshkumar G, et al. Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan)[J]. Applied Soil Ecology, 2010, 44: 252-261.
[23]
Liu Guangxiu, Hu Ping, Zhang Wei, et al. Variations in soil culturable bacteria communities and biochemical characteristics in the Dongkemadi Glacier forefield along a chronosequence[J]. Folia Microbiologica, 2012, 57: 485-494.
[24]
Qian P, Schoenaru J J, Karamanos R E. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modified of Kelowna extraction[J]. Communications in Soil Science and Plant Analysis, 1994, 25: 627-635.
[25]
Chu Haiyan, Fierer N, Lauber C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology, 2010, 12: 2998-3006.
[26]
Wang Changting, Long Ruijun, Wang Qiji, et al. Distribution of organic matter, nitrogen and phosphorous along an altitudinal gradient and productivity change and their relationships with environmental factors in the alpine meadow[J]. Acta Prataculturae Sinica, 2005, 14(4): 15-20. [王长庭, 龙瑞军, 王启基, 等. 高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J]. 草业学报, 2005, 14(4): 15-20.]
[27]
Zhang Tao, Che Kejun, Wang Hui. Research on soft water dynamics along an elevation gradient in Picea crassifolia forestry lands in Qilian Mountains[J]. Hubei Agricultural Sciences, 2009, 48(5): 1107-1111. [张涛, 车克钧, 王辉. 祁连山青海云杉林不同海拔梯度土壤水分动态变化[J]. 湖北农业科学, 2009, 48(5): 1107-1111.]
[28]
Smith R S, Shiel R S, Bardgett R D, et al. Soil microbial community, fertility, vegetation and diversity as targets in the restoration management of a meadow grassland[J]. Journal of Applied Ecology, 2003, 40: 51-64.
[29]
Bajerski F, Wagner D. Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica[J]. FEMS Microbiology Ecology, 2013, 85: 128-142.
[30]
Liu Guangxiu, Dong Xiaopei, Zhang Wei, et al. The changing mechanisms of microbial number on surface soil with altitude[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1170-1174. [刘光琇, 董小培, 张威, 等. 不同海拔表层土壤微生物数量消长的机理[J]. 冰川冻土, 2010, 32(6): 1170-1174.]
[31]
Mao Wenliang, Tai Xisheng, Wu Xiukun, et al. Altitudinal variation characteristics of the cultivable soil bacterial community on the upper reaches of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 447-456. [毛文梁, 台喜生, 伍修锟, 等. 黑河上游祁连山区土壤可培养细菌群落生境的垂直分异特征[J]. 冰川冻土, 2013, 35(2): 447-456.]
[32]
Qin Lu, Lü Guanghui, He Xuemin. Effects of freezing-thawing on soil microbial quantity and community structure around the Ebinur Lake[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1590-1599. [秦璐, 吕光辉, 何学敏. 艾比湖地区冻融作用对土壤微生物数量和群落结构的影响[J]. 冰川冻土, 2013, 35(6): 1590-1599.]
[33]
Krashevska V, Bonkowski M, Maraun M, et al. Microorganisms as driving factors for the community structure of testate amoebae along an altitudinal transect in tropical mountain rain forests[J]. Soil Biology and Biochemistry, 2008, 40: 2427-2433.
[34]
Ganzert L, Lipski A, Hubberten H W, et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica[J]. FEMS Microbiology Ecology, 2011, 76: 476-491.
[35]
Kang Wenlong, Tai Xisheng, Li Shiweng, et al. Research on the number of nitrogen-fixing microorganism and community structure of nitrogen-fixing (nifH) genes in the alkali soils of alpine steppe in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 208-216. [康文龙, 台喜生, 李师翁, 等. 祁连山高寒草原碱性土壤固氮微生物数量及固氮基因(nifH)群落结构研究[J]. 冰川冻土, 2013, 35(1): 208-216.]