全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

土壤冻融过程对祁连山森林土壤碳氮的影响

DOI: 10.7522/j.issn.1000-0240.2014.0025, PP. 200-206

Keywords: 祁连山森林,土壤冻融过程,土壤有机碳,土壤全氮,碳氮矿化

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用祁连山区3个气象站常年监测的冻土与温度资料,研究了0~60cm层次土壤有机碳和全氮分布及与海拔高度、土壤温度的关系,并在室内模拟研究了冻融过程(-20~15℃)对祁连山青海云杉林和高山灌丛林土壤有机碳和氮矿化过程的影响.结果表明土壤的有机碳和全氮含量随海拔上升呈增加趋势,土壤有机碳和全氮含量与海拔呈显著正相关关系,与土壤温度呈显著负相关关系.室内模拟实验表明,经过多次冻融循环过程,冻融处理抑制了土壤有机碳矿化过程,对照处理土壤有机碳矿化速率高于冻融处理.冻融次数也是影响土壤有机氮矿化的一个重要因素,经过42次冻融,青海云杉林和高山灌丛林土壤中有机氮质量分数分别提高了2.42倍和2.82倍.土壤冻融过程促进了土壤有机氮的矿化,有利于土壤中有效氮的累积.

References

[1]  Wang Qibing, Li Linghao, Liu Xianhua, et al. Spatial heterogeneity of soil organic carbon and total nitrogen in an Xilin River basin grassland, Inner Mongolia[J]. Acta Phytoecologica Sinica, 1998, 22(5): 409-414. [王其兵, 李凌浩, 刘先华, 等. 内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J]. 植物生态学报, 1998, 22(5): 409-414.]
[2]  Wang Qingfeng, Zhang Tingjun, Wu Jichun, et al. Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 19-29. [王庆峰, 张廷军, 吴吉春, 等. 祁连山区黑河上游多年冻土分布考察[J]. 冰川冻土, 2013, 35(1): 19-29.]
[3]  Mu Cuicui, Zhang Tingjun, Cao Bin, et al. Study of the organic carbon storage in the active layer of permafrost over the Eboling Mountain in the upper reaches of the Heihe River in the Eastern Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 1-9. [牟翠翠, 张廷军, 曹斌, 等. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究[J]. 冰川冻土, 2013, 35(1): 1-9.]
[4]  Fitzhugh R D, Driscoll C T, Groffman P M, et al. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem[J]. Biogeochemistry, 2001, 56: 215-238.
[5]  Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology and Biochemistry, 2002, 34: 1495-1505.
[6]  Shilpi S, Zsofia S, Rolf S, et al. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil[J]. Applied and Environmental Microbiology, 2006, 72: 2148-2154.
[7]  Ludwig B, Teepe R, Lopes V, et al. CO2 and N2O emission from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods-A microcosm study[J]. Soil Biology and Biochemistry, 2006, 38: 3516-3519.
[8]  Neilsen C B, Groffman P M, Hamburg S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 2001, 65: 1723-1730.
[9]  Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability[J]. Applied Soil Ecology, 2006, 35: 247-255.
[10]  An Meiling, Zhang Bo, Sun Liwei, et al. Quantitative analysis of dynamic change of land use and its influencing factors in upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 355-363. [安美玲, 张勃, 孙力炜, 等. 黑河上游土地利用动态变化及影响因素的定量分析[J]. 冰川冻土, 2013, 35(2): 355-363.]
[11]  Zhou Caiping, Ouyang Hua. Influence of temperature and moisture on soil nitrogen mineralization under two types of forest in Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2001, 4(12): 505-508. [周才平, 欧阳华. 温度和湿度对长白山两种林型下土壤氮矿化的影响[J]. 应用生态学报, 2001, 4(12): 505-508.]
[12]  Zhou Wangming, Chen Hua, Zhou Li, et al. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain[J]. Annals of Forest Science, 2011, 68: 943-951.
[13]  Jin Ming, Li Yi, Liu Xiande, et al. Interannual variation characteristics of seasonal frozen soil in upper-middle reaches of Heihe River in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1068-1073. [金铭, 李毅, 刘贤德, 等. 祁连山黑河中上游季节冻土年际变化特征分析[J]. 冰川冻土, 2011, 33(5): 1068-1073.]
[14]  Zhang Jiutian, He Xiaojia, Shangguan Donghui, et al. Impact of intensive glacier ablation on arid regions of Northwest China and its countermeasure[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 848-854. [张九天, 何霄嘉, 上官冬辉, 等. 冰川加剧消融对我国西北干旱区的影响及其适应对策[J]. 冰川冻土, 2012, 34(4): 848-854.]
[15]  Chen Hao, Nan Zhuotong, Wang Shugong, et al. Simulating the water-heat processes on typical sites in the mountains areas of the upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 126-137. [陈浩, 南卓铜, 王书功, 等. 黑河上游山区典型站的水热过程模拟研究[J]. 冰川冻土, 2013, 35(1): 126-137.]
[16]  Mao Wenliang, Tai Xisheng, Wu Xiukun, et al. Altitudinal variation characteristics of the cultivable soil bacterial community on the upper reaches of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 447-456. [毛文梁, 台喜生, 伍修锟, 等. 黑河上游祁连山区土壤可培养细菌群落生境的垂直分异特征[J]. 冰川冻土, 2013, 35(2): 447-456.]
[17]  Bai Jiebing, Xu Xingliang, Song Minghua, et al. Effects of temperature and added nitrogen on carbon mineralization in alpine soils on the Tibetan Plateau[J]. Ecology and Environment, 2011, 20(5): 855-859. [白洁冰, 徐兴良, 宋明华, 等. 温度和氮素输入对青藏高原三种高寒草地土壤碳矿化的影响[J]. 生态环境学报, 2011, 20(5): 855-859.]
[18]  Lin Bo, Liu Qing, Wu Yan, et al. Advances in the studies of forest litter[J]. Chinese Journal of Ecology, 2004, 23(1): 60-64. [林波, 刘庆, 吴彦, 等. 森林凋落物研究进展[J]. 生态学杂志, 2004, 23(1): 60-64.]
[19]  Killham K. Nitrification in coniferous forest soils[J]. Plant and Soil, 1990, 128: 31-44.
[20]  Larsen K S, Jonasson S, Michelsen A. Repeated freeze/thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21: 187-195.
[21]  Jia Guojing, Zhou Yongbin, Dai Limin, et al. Effect of freezing-thawing on the carbon and nitrogen mineralization in Changbai Mountain[J]. Ecology and Environment, 2012, 21(4): 624-628. [贾国晶, 周永斌, 代力民, 等. 冻融对长白山森林土壤碳氮矿化的影响[J]. 生态环境学报, 2012, 21(4): 624-628.]
[22]  Teepe R, Brumme R, Beese F. Nitrous oxide emissions from soil during freezing and thawing periods[J]. Soil Biology and Biochemistry, 2001, 33: 1269-1275.
[23]  Hao Ruijun, Li Zhongpei., Che Yuping. Effects of freezing and thawing cycles on the contents of WSOC and the organic carbon mineralization in paddy soil[J]. Chinese Journal of Soil Science, 2007, 38(6): 1052-1057. [郝瑞军, 李忠佩, 车玉萍. 冻融交替对水稻土水溶性有机碳含量及有机碳矿化的影响[J]. 土壤通报, 2007, 38(6): 1052-1057.]
[24]  Panikov N S, Flanagan P W, Oechel W C, et al. Microbial activity in soils frozen to below -39 ℃[J]. Soil Biology and Biochemistry, 2006, 38: 785-794.
[25]  Elberling B, Brandt K K. Uncoupling of microbial CO2 production and CO2 release in frozen soil and its implications for field studies of arctic C cycling[J]. Soil Biology and Biochemistry, 2003, 35: 263-272.
[26]  Sulkava P, Huhta V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralization in boreal forest soil[J]. Applied Soil Ecology, 2003, 22: 225-239.
[27]  Koponen H T, Flojt L, Martikainen P J. Nitrous oxide emissions from agricultural soils at low temperatures: A laboratory microcosm study[J]. Soil Biology and Biochemistry, 2004, 36: 757-766.
[28]  Fan Jihui, Cao Yingzi, Yan Yan, et al. Freezing-thawing cycles effect on the water soluble organic carbon, nitrogen and microbial biomass of alpine grassland soil in Northern Tibet[J]. African Journal of Microbiology Research, 2012, 6(3): 562-567.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133