全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

天然与风干状态下冷生亚黏土的崩解形态特征

DOI: 10.7522/j.issn.1000-0240.2014.0014, PP. 118-122

Keywords: 土壤崩解,崩解形态,崩解速率,冷生亚黏土

Full-Text   Cite this paper   Add to My Lib

Abstract:

土的崩解形态是描述土的崩解过程及探讨其崩解机理重要的必要条件之一,选取了一种高孔隙率、粉黏粒含量较高,且不具有湿陷性的原状冷生轻质亚黏土作为研究对象,对其天然含水量及风干含水量状态下的土样品进行崩解试验.结果表明天然状态的土样呈块状崩解,而风干状态下的呈鳞片状崩解,且鳞片状崩解的强度及平均速率都大于块状崩解;块状崩解的速率随时间变化较为缓和,而鳞片状崩解的速率随时间变化起伏较大.崩解形态与崩解速率有着紧密的对应关系,与崩解形态相对比,发现崩解速率降低的过程是水侵入土样,且土样中空气压力增大的过程,而速率上升的过程则是土样崩解的过程.

References

[1]  Tang Daxiong, Liu Yourong, Zhang Wenshu, et al. Rock and Soil Engineering[M]. Beijing: Geological Publishing House, 1999: 1-270. [唐大雄, 刘佑荣, 张文殊, 等. 工程岩土学[M]. 北京: 地质出版社, 1999: 1-270.]
[2]  He Manchao, Jing Haihe, Sun Xiaoming. Mechanics of Soft Rock Engineering[M]. Beijing: Science Press, 2002: 1-252. [何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002: 1-252.]
[3]  Terzaghi K, Peck R B. Soil Mechanics in Engineering Practice[M]. 2nd ed. New York: John Wiley & Sons, 1967: 52-65.
[4]  Gamble J C. Durability-Plasticity Classification of Shales and Other Argillaceous Rocks[D]. Urbana-Champaign, IL: University of Illinois, 1971: 47-49.
[5]  Faulkner H, Alexander R, Teeuw R, et al. Variations in soil dispersivity across a gully head displaying shallow sub-surface pipes, and the role of shallow pipes in rill initiation[J]. Earth Surface Processes and Landforms, 2004, 29(9): 1143-1160.
[6]  Li Jiachun, Cui Shifu, Tian Weiping. Erosion characteristic of road slope and test of soil disintegration[J]. Journal of Chang'an University (Natural Science), 2007, 27(1): 23-26. [李家春, 崔世富, 田伟平. 公路边坡降雨侵蚀特征及土的崩解试验[J]. 长安大学学报(自然科学版), 2007, 27(1): 23-26.]
[7]  Brivois O, Bonelli S, Borghi R. Soil erosion in the boundary layer flow along a slope: A theoretical study[J]. European Journal of Mechanics (B/Fluids), 2007, 26(6): 707-719.
[8]  Liu Changwu, Lu Shiliang. Research on mechanism of mudstone degradation and softening in water[J]. Rock and Soil Mechanics, 2000, 21(1): 28-31. [刘长武, 陆士良. 泥岩遇水崩解软化机理的研究[J]. 岩土力学, 2000, 21(1): 28-31.]
[9]  Qi Yuan, Liu Yong, Yang Zhenghua, et al. GIS-based analysis of landslide and debris flow hazard in Lanzhou[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 96-104. [祁元, 刘勇, 杨正华, 等. 基于GIS的兰州滑坡与泥石流灾害危险性分析[J]. 冰川冻土, 2012, 34(1): 96-104.]
[10]  Tang Cuiwen, Zhang Zhongming, Xiao Duning, et al. Environmental factor characteristics of soil erosion in the upper reaches of Shiyang River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 105-113. [汤萃文, 张忠明, 肖笃宁, 等. 祁连山石羊河上游山区土壤侵蚀的环境因子特征分析[J]. 冰川冻土, 2012, 34(1): 105-113.]
[11]  Han Xiaoyan, Qian Ju, Wang Lei, et al. Progress in studying multi-scale process of soil erosion (water erosion) and soil conservation in the Loess Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1487-1498. [韩晓燕, 钱鞠, 王磊, 等. 黄土高原土壤侵蚀(水蚀)多尺度过程与水土保持研究进展[J]. 冰川冻土, 2012, 34(6): 1487-1498.]
[12]  Yang Zhen, Wen Zhi, Niu Fujun, et al. Research on thermokarst lakes in permafrost regions: Present state and prospect[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1519-1526. [杨振, 温智, 牛富俊, 等. 多年冻土区热融湖研究现状与展望[J]. 冰川冻土, 2013, 35(6): 1519-1526.]
[13]  Liu Jinpeng, Gao Shiming, Wang Dekai, et al. Research on distribution feature of debris flow gullies and their susceptibility evaluation in Hexi area of Gansu Province[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1610-1618. [刘金鹏, 高世铭, 王得楷, 等. 甘肃河西地区泥石流沟分布特征与易发性评估研究[J]. 冰川冻土, 2013, 35(6): 1610-1618.]
[14]  Feng Qiyan, Cao Dingtao. Microstructure and engineering geological characteristics of red layer[J]. Hydrogeology and Engineering Geology, 1994, 21(5): 15-16. [冯启言, 曹丁涛. 红层的微观结构与工程地质特性研究[J]. 水文地质工程地质, 1994, 21(5): 15-16.]
[15]  Phienwej N. Ground Response and Support Performance in a Sheared Shale, Stillwater Tunnel, Utah[D]. PhD Thesis, Urbana, IL: University of Illinois, 1987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133