Sharma S K, Ramesh A, Sharma M P, et al. Microbial community structure and diversity as indicators for evaluating soil quality[M]//Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. New York: Springer, 2011: 317-358.
[2]
Fan Jixiang, Gao Chunhua, Lu Chaodong, et al. Review on mi-ne soil microorganism diversity research[J]. Journal of Shanxi Agricultural Sciences, 2010, 38(3): 55-58. [范继香, 郜春花, 卢朝东, 等. 矿区土壤微生物多样性研究概述[J]. 山西农业科学, 2010, 38(3): 55-58.]
[3]
Harris J. Soil microbial communities and restoration ecology: Fa-cilitators or followers?[J]. Science, 2009, 325(5940): 573-574.
[4]
Liu Yongjun, He Junxia, Shi Guoxi, et al. Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau[J]. FEMS Microbiology Ecology, 2011, 78(2): 355-365.
[5]
Fitzsimons M S, Miller R M. The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie[J]. American Journal of Botany, 2010, 97(12): 1937-1943.
[6]
Bever J D, Platt T G, Morton E R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66: 265.
[7]
Li Lubin, Liu Zhenjing, Yang Kai, et al. Soil microbial AR-DRA analysis of Tanggula Mountain Pass along the Qinghai-Tibet Railway[J]. Acta Ecologica Sinica, 2008, 28(11): 5482-5487. [李潞滨, 刘振静, 杨凯, 等. 青藏铁路沿线唐古拉山口土壤微生物的ARDRA分析[J]. 生态学报, 2008, 28(11): 5482-5487.]
[8]
Zhu Guanghua, Tao Ling, Ren Jun. Evaluation of using land for constructing Qinghai-Tibet Railway on native vegetation[J]. Acta Agrestia Sinica, 2006, 14(2): 160-180. [祝广华, 陶玲, 任珺. 青藏铁路工程迹地对植被的影响评价[J]. 草地学报, 2006, 14(2): 160-180.]
[9]
Jin Huijun, Yu Qihao, Wang Shaoling, et al. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming[J]. Cold Regions Science and Technology, 2008, 53(3): 317-333.
[10]
Wilkomirski B, Sudnik-Wójcikowska B, Galera H, et al. Railway transportation as a serious source of organic and inorganic pollution[J]. Water, Air, & Soil Pollution, 2011, 218(1/4): 333-345.
[11]
Zhang Hua, Wang Zhaofeng, Zhang Yili, et al. The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils[J]. Science of the Total Environment, 2012, 439: 240-248.
[12]
Wang Guanxing, Yan Xuedong, Zhang Fan, et al. Traffic-related trace element accumulation in roadside soils and wild grasses in the Qinghai-Tibet Plateau, China[J]. International Journal of Environmental Research and Public Health, 2014, 11: 456-472.
[13]
Liu Hao, Chen Liping, Ai Yingwei, et al. Heavy metal contamination in soil alongside mountain railway in Sichuan, China[J]. Environmental Monitoring and Assessment, 2009, 152(1/4): 25-33.
[14]
Ma Jianhua, Chu Chunjie, Li Jian, et al. Heavy metal pollution in soils on railroad side of Zhengzhou-Putian section of Longxi-Haizhou railroad, China[J]. Pedosphere, 2009, 19(1): 121-128.
[15]
Wang Yibo, Wang Genxu, Chang Juan. Impacts of human activity on permafrost environment of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2004, 26(5): 523-527. [王一博, 王根绪, 常娟. 人类活动对青藏高原冻土环境的影响[J]. 冰川冻土, 2004, 26(5): 523-527.]
[16]
Liu Zhenjing, Li Lubin, Zhuang Caiyun, et al. Analysis of microbial diversity in soil along the Qinghai-Tibet Railway[J]. Research of Environmental Sciences, 2008, 21(6): 176-181. [刘振静, 李潞滨, 庄彩云, 等. 青藏铁路沿线土壤可培养微生物种群多样性分析[J]. 环境科学研究, 2008, 21(6): 176-181.]
[17]
Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1499-1507. [张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6): 1499-1507.]
[18]
Dong Kang, Li Shiweng, Kang Wenlong, et al. Study of the changes in microbe amount and its affect factors in the soils along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 457-464. [董康, 李师翁, 康文龙, 等. 青藏公路沿线土壤微生物数量变化及其影响因素研究[J]. 冰川冻土, 2013, 35(2): 457-464.]
[19]
Chen Wei, Zhang Wei, Li Shiweng, et al. Features of soil cultivable microorganism quantity and diversity distribution under different alpine grassland ecosystems in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1419-1426. [陈伟, 张威, 李师翁, 等. 青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究[J]. 冰川冻土, 2011, 33(6): 1419-1426.]
[20]
Zhang Jing, Zhang Huiwen, Zhang Chenggang. Real-time fluorescent quantitative PCR and its application in microbial ecology[J]. Acta Ecologica Sinica, 2005, 25(6): 1445-1450. [张晶, 张惠文, 张成刚. 实时荧光定量PCR及其在微生物生态学中的应用[J]. 生态学报, 2005, 25(6): 1445-1450.]
[21]
Rodrigues D F, Tiedje J M. Multi-locus real-time PCR for quantitation of bacteria in the environment reveals Exiguobacterium to be prevalent in permafrost[J]. FEMS Microbiology Ecology, 2007, 59(2): 489-499.
[22]
Yong Xiaoyu, Cui Yaqing, Chen Lihua, et al. Dynamics of bacterial communities during solid-state fermentation using agro-industrial wastes to produce poly-γ-glutamic acid, revealed by real-time PCR and denaturing gradient gel electrophoresis (DGGE)[J]. Applied Microbiology and Biotechnology, 2011, 92(4): 717-725.
[23]
Zhang Gaosen, Niu Fujun, Busse H-J, et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet Plateau permafrost region[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(5): 1215-1220.
[24]
Zhang Xiaojun, Ma Xiaojun, Wang Ninglian, et al. New subgroup of Bacteroidetes and diverse microorganisms in Tibetan Plateau glacial ice provide a biological record of environmental conditions[J]. FEMS Microbiology Ecology, 2009, 67(1): 21-29.
[25]
Ma Aiai, Zhang Xinfang, Zhao Lin, et al. Diversity and physiological activity of Streptomyces spp. isolated from permafrost of the Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1508-1516. [马爱爱, 张新芳, 赵林, 等. 青藏高原冻土链霉菌分离菌株多样性及其生理活性的研究[J]. 冰川冻土, 2012, 34(6): 1508-1516.]
[26]
Hu Ping, Wu Xiukun, Li Shiweng, et al. Progress of studies on permafrost microbial ecology in the past 10 years[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 732-739. [胡平, 伍修锟, 李师翁, 等. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3): 732-739.]
[27]
Zhang Gaosen, Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environmental factors in glacier foreland[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 965-971. [章高森, 张威, 刘光琇, 等. 环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布[J]. 冰川冻土, 2012, 34(4): 965-971.]
[28]
Vishnivetskaya T A, Petrova M A, Urbance J, et al. Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods[J]. Astrobiology, 2006, 6(3): 400-414.
[29]
Ravenschlag K, Sahm K, Amann R. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard)[J]. Applied and Environmental Microbiology, 2001, 67(1): 387-395.
[30]
Ma Dawei. Distribution Charicateristics of Bacterial Community and Enzyme Activity and Their Affecting Factors in Antarctic Tundra Soils[D]. PhD Thesis, Hefei: University of Science and Technology of China, 2013. [马大卫. 南极苔原土壤细菌群落和酶活性分布特征及其影响因素[D]. 博士论文, 合肥: 中国科学技术大学, 2013.]
[31]
Li Changming, Zhang Xinfang, Zhao Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 713-725. [李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3): 713-725.]
[32]
Rousk J, Bth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10): 1340-1351.
[33]
Xiong Jinbo, Liu Yongqin, Lin Xianggui, et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau[J]. Environmental Microbiology, 2012, 14(9): 2457-2466.
[34]
Brockett B F T, Prescott C E, Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry, 2012, 44(1): 9-20.
[35]
el Zahar Haichar F, Marol C, Berge O, et al. Plant host habitat and root exudates shape soil bacterial community structure[J]. The ISME Journal, 2008, 2(12): 1221-1230.
[36]
Shi Shengjing, Richardson A E, O'Callaghan M, et al. Effects of selected root exudate components on soil bacterial communities[J]. FEMS Microbiology Ecology, 2011, 77(3): 600-610.
[37]
Ganzert L, Lipski A, Hubberten H W, et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica[J]. FEMS Microbiology Ecology, 2011, 76(3): 476-491.
[38]
Chen Hui, Li Shuangcheng, Zheng Du. Features of ecosystem alongside Qinghai-Xizang highway and railway and the impacts of road construction on them[J]. Journal of Mountain Science, 2003, 21(5): 559-567. [陈辉, 李双成, 郑度. 青藏公路铁路沿线生态系统特征及道路修建对其影响[J]. 山地学报, 2003, 21(5): 559-567.]
[39]
Chen Junhui, He Feng, Zhang Xuhui, et al. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil[J]. FEMS Microbiology Ecology, 2014, 87(1): 164-181.