全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

冻土蠕变指标试验研究

DOI: 10.7522/j.issn.1000-0240.2014.0016, PP. 130-136

Keywords: 冻土,蠕变试验,初始应变,流变起始时间,破坏时间,破坏应变

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过不同温度、不同加载应力作用下冻结兰州黄土、黏土、砂质黏土的蠕变试验,分析了蠕变曲线、初始应变、流变起始应变与流变起始时间、破坏应变与破坏时间及相对蠕变指标.结果表明3种土质冻土的蠕变曲线变化规律大致相同,加载过程中,应变非线性增加,且加载应力越大、温度越高,初始应变越大;流变起始时间与破坏时间都与加载应力、温度有密切关系,加载应力越大、温度越高,越先出现流变和破坏.对于相同的土质,加载应力和温度对流变起始应变、破坏应变的影响不大;对于不同土质的初始应变、流变起始应变和破坏应变,都是黏土最大、砂质黏土次之、兰州黄土最小.3种土质冻土的初始加载段和非稳定蠕变段所占的时间较短,但产生的应变却较大;同时,温度越高,相对流变时间越短、相对破坏时间越长,说明非稳定蠕变阶段所占的时间随温度的升高而变短、稳定蠕变阶段所占的时间随温度的升高而变长.

References

[1]  Vyalov S S. Rheology of Frozen Soil[M]. Liu Jiankun, Liu Yaojun, Xu Yan, trans. Beijing: China Railway Publishing House, 2005. [维亚洛夫. 冻土流变学[M]. 刘建坤, 刘尧军, 徐艳, 译. 北京: 中国铁道出版社, 2005.]
[2]  Ladanyi B. An engineering theory of creep of frozen soils[J]. Canadian Geotechnical Journal, 1972, 9(1): 63-88.
[3]  Ting J M. Tertiary creep model for frozen sands[J]. ASCE Journal of Geotechnical Engineering, 1983, 109(7): 932-945.
[4]  Zhu Yuanlin, He Ping, Zhang Jiayi, et al. Effect of confine pressure on creep behavior of frozen soil under dynamic loading[J]. Journal of Glaciology and Geocryology, 1995, 17(S1): 20-25. [朱元林, 何平, 张家懿, 等. 围压对冻结粉土在振动荷载作用下蠕变性能的影响[J]. 冰川冻土, 1995, 17(S1): 20-25.]
[5]  Zhu Yuanlin, Carbee D L. Creep behavior of frozen silt under constant uniaxial stress [J]. Journal of Glaciology and Geocryology, 1984, 6(1): 33-48. [朱元林, 卡皮D L. 冻结粉砂在常应力下的蠕变特性[J]. 冰川冻土, 1984, 6(1): 33-48.]
[6]  Sheng Yu, Wu Ziwang, Miao Lina, et al. Creep failure characteristics of frozen sand under two-step stress[J]. Journal of Glaciology and Geocryology, 1995, 17(4): 334-338. [盛煜, 吴紫汪, 苗丽娜, 等. 冻结砂土在两级应力作用下的蠕变破坏性质[J]. 冰川冻土, 1995, 17(4): 334-338.]
[7]  Wu Ziwang, Ma Wei. Strength and Creep of Frozen Soil[M]. Lanzhou: Lanzhou University Press, 1994. [吴紫汪, 马巍. 冻土强度与蠕变[M]. 兰州: 兰州大学出版社, 1994.]
[8]  Zhao Shuping, He Ping, Zhu Yuanlin,et al. Comparison of dynamic and static creep characteristics of frozen silt[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2160-2163. [赵淑萍, 何平, 朱元林, 等. 冻结粉土的动静蠕变特性比较[J]. 岩土工程学报, 2006, 28(12): 2160-2163.]
[9]  Zhao Shuping, Ma Wei, Jiao Guide,et al. The features of strain and strength of frozen silt under long-time dynamic loading[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 144-151. [赵淑萍, 马巍, 焦贵德, 等. 长期动荷载作用下冻结粉土的变形和强度特征[KG)][J]. 冰川冻土, 2011, 33(1): 144-151.]
[10]  Wu Ziwang, Ma Wei, Pu Yibin, et al. Submicroscopic analysis on deformation characteristics in creep process of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 1-6. [吴紫汪, 马巍, 蒲毅彬, 等. 冻土蠕变变形特性的细观分析[J]. 岩土工程学报, 1997, 19(3): 1-6.]
[11]  Chen Shijie, Zhao Shuping, Ma Wei, et al. Studying frozen soil with CT technology: Present studies and prospects[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 193-200. [陈世杰, 赵淑萍, 马巍, 等. 利用CT扫描技术进行冻土研究的现状和展望[J]. 冰川冻土, 2013, 35(1): 193-200.]
[12]  Yin Xiaowen, Fu Qiang, Ma Kunlin. Study of the nonlinear mathematical model for triaxial creep of frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 171-176. [尹晓文, 傅强, 马昆林. 冻土三轴蠕变非线性数学模型研究[J]. 冰川冻土, 2013, 35(1): 171-176.]
[13]  Sheng Yu, Wu Ziwang, Miao Lina, et al. The unfired creep model of frozen soil under uniaxial compress condition[J]. Progress in Natural Science, 1996, 6(3): 357-360. [盛煜, 吴紫汪, 苗丽娜, 等. 冻土单轴压缩蠕变的归一化模型[J]. 自然科学进展, 1996, 6(3): 357-360.]
[14]  Tsytovich N A. Mechanics of Frozen Soil[M]. Zhang Changqing, Zhu Yuanlin, trans. Beijing: Science Press, 1985: 108-148. [崔托维奇. 冻土力学[M]. 张长庆, 朱元林, 译. 北京: 科学出版社, 1985: 108-148.]
[15]  Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of Frozen Soil [M]. Beijing: Science Press, 2001. [徐[HT8.,5.]学 Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. [周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.]
[16]  Cheng Guodong, He Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciology and Geocryology, 2001, 23(3): 213-217. [程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217.]
[17]  Luo Fei, Zhao Shuping, Ma Wei,et al. Characteristics of dynamic strain amplitude of frozen Lanzhou loess under dynamic loading[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 884-890. [罗飞, 赵淑萍, 马巍, 等. 动荷载作用下冻结兰州黄土的动应变幅变化特征研究[J]. 冰川冻土, 2012, 34(4): 884-890.]
[18]  Su Kai, Zhang Jianming, Liu Shiwei, et al. Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375. [苏凯, 张建明, 刘世伟, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375.]
[19]  Chen Jin, Li Dongqing, Bing Hui, et al. An experimental study of influence of water content on uniaxial compression strength of frozen salty silt[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 441-446. [陈锦, 李东庆, 邴慧, 等. 含水量对冻结含盐粉土单轴抗压强度影响的试验研究[J]. 冰川冻土, 2012, 34(2): 441-446.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133