全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

热管措施下锥柱式桩基础传热过程及降温效果预测研究

DOI: 10.7522/j.issn.1000-0240.2014.0013, PP. 106-117

Keywords: 冻土地基,热管,传热过程,冷却降温,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对青藏直流联网工程塔基热稳定性问题,建立空气-热管-土体耦合传热数学模型,并利用该模型开展锥柱式基础传热过程及热管冷却降温效果的模拟预测研究.结果表明冷季热管工作期间,其周围地温梯度明显较大且呈“纺锤形”分布.同时,由于锥柱式基础及其底座为热的良导体,热管产生的冷量通过锥柱式基础及其底座快速向基础底部传递,使得基础下部形成大范围低温冻土,这对主要考虑融沉病害的锥柱式基础而言十分有利.暖季热管停止工作期间,浅层地温主要受环境温度影响,锥柱式基础附近融化深度大于天然地表下,二者差值约35cm.通过热管剖面及无热管作用中间剖面地温对比,发现单一塔腿在4根热管措施作用下,锥柱式基础周围多年冻土地温分布较为均匀,可避免冻土地基的显著不均匀沉降变形.热管周围土体快速降温过程主要集中在前5a,之后受气候变暖影响桩基础及天然地表以下上限深度不断增加,多年冻土地温缓慢升高.50a气温升高2.6℃背景下,锥柱式基础下部多年冻土仍保持冻结状态,能够满足青藏直流联网工程对于冻土地基热稳定性要求.

References

[1]  Yu Qihao, Liu Houjian, Qian Jin, et al. Research on frozen engineering of Qinghai-Tibet 500 KV DC Power Transmission Line[J]. Chinese Journal of Engineering Geophysics, 2009, 6(6): 806-812. [俞祁浩, 刘厚健, 钱进, 等. 青藏直流联网工程±500 KV输电线路的工程问题分析[J]. 工程地球物理学报, 2009, 6(6): 806-812.]
[2]  Ma Wei, Liu Duan, Wu Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571-579. [马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学, 2008, 29(3): 571-579.]
[3]  Yu Qihao, Wen Zhi, Ding Yansheng, et al. Monitoring the tower foundation in the permafrost regions along the Qinghai-Tibet DC Transmission Line from Qinghai Province to Tibetan Autonomous Region[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1165-1172. [俞祁浩, 温智, 丁燕生, 等. 青藏直流线路冻土地基监测研究[J]. 冰川冻土, 2012, 34(5): 1165-1172.]
[4]  Instanes A. Infrastructure: Buildings, Support Systems, and Industrial Facilities[M]. Cambridge, UK: Cambridge University Press, 2005.
[5]  Cheng Guodong, He Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciology and Geocryology, 2001, 23(3): 213-217. [程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217.]
[6]  Ma Wei, Cheng Guodong, Wu Qingbai. Preliminary study on technology of cooling foundation in permafrost regions[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 579-587. [马巍, 程国栋, 吴青柏. 多年冻土地区主动冷却地基方法研究[J]. 冰川冻土, 2002, 24(5): 579-587.]
[7]  Wu Qingbai, Liu Yongzhi, Zhang Jianming. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Processes, 2002, 13(3): 199-205.
[8]  Hao Jiaqian, He Ruixia. Discussion of the permafrost environment and pipeline construction technique along the China-Russia Pipeline[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1224-1231. [郝加前, 何瑞霞. 中俄原油管道沿线多年冻土环境及管道施工技术探讨[J]. 冰川冻土, 2013, 35(5): 1224-1231.]
[9]  Wu Qingbai, Niu Fujun. Permafrost changes and engineering st-ability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2012, 58: 1079-1084.
[10]  Li Yong, Han Longwu, Xu Guoqi. Research on stability of embankment in permafrost regions along Qinghai-Tibet Railway and its control[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 880-883. [李勇, 韩龙武, 许国琪. 青藏铁路多年冻土路基稳定性及防治措施研究[J]. 冰川冻土, 2011, 33(4): 880-883.][GK-2!]
[11]  Wu Qingbai, Shi Bin, Liu Yongzhi. Interaction study of permafrost and highway along Qinghai-Xizang Highway[J]. Science in China (Series D: Earth Sciences), 2003, 46(2): 97-105. [吴青柏, 施斌, 刘永智. 青藏公路沿线多年冻土与公路相互作用研究[J]. 中国科学(D辑: 地球科学), 2002, 32(6): 514-520.]
[12]  Jin Huijun, Yu Wenbing, Chen Youchang, et al. (Differential) frost heave and thaw settlement in the engineering design and construction of oil pipelines in permafrost regions: A review[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 454-464. [金会军, 喻文兵, 陈友昌, 等. 多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J]. 冰川冻土, 2005, 27(3): 454-464.]
[13]  Ma Wei, Mu Yanhu, Li Guoyu, et al. Responses of embankment thermal regime to engineering activities and climate change along the Qinghai-Tibet Railway[J]. Scientia Sinica Terrae, 2013, 43: 478-489. [马巍, 穆彦虎, 李国玉, 等. 多年冻土区铁路路基热状况对工程扰动及气候变化的响应[J]. 中国科学: 地球科学, 2013, 43: 478-489.]
[14]  Niu Fujun, Ma Wei, Wu Qingbai. Thermal stability of roadbeds of the Qinghai-Tibet Railway in permafrost regions and the main freezing-thawing hazards[J]. Journal of Earth Science and Environment, 2011, 33(2): 196-206. [牛富俊, 马巍, 吴青柏. 青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J]. 地球科学与环境学报, 2011, 33(2): 196-206.]
[15]  Ma Wei, Mu Yanhu, Wu Qingbai, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2011, 67: 178-186.
[16]  Mu Yanhu, Ma Wei, Wu Qingbai, et al. Thermal regime of conventional embankments along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2012, 70: 123-131.
[17]  Li Mingyong, Wu Qingbai, Liu Yongzhi. Monitoring the soil heat-moisture processes within an embankment in Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 546-550. [李明永, 吴青柏, 刘永智. 青藏铁路路基下部土体水热过程变化的监测研究[J]. 冰川冻土, 2011, 33(3): 546-550.]
[18]  Kong Xiangbing, Zhao Shuping, Mu Yanhu, et al. Research on the calculation of dynamic stress of embankment in permafrost regions under train load[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1490-1498. [孔祥兵, 赵淑萍, 穆彦虎, 等. 列车荷载作用下冻土路基中的动应力计算研究[J]. 冰川冻土, 2013, 35(6): 1490-1498.]
[19]  Luo Dongliang, Jin Huijun, Lin Lin, et al. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 538-546. [罗栋梁, 金会军, 林琳, 等. 青海高原中、东部多年冻土及寒区环境退化[J]. 冰川冻土, 2012, 34(3): 538-546.]
[20]  Bommer C, Phillips M, Arenson L U. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost[J]. Permafrost Periglacial Processes, 2010, 21(1): 97-104.
[21]  Ma Wei, Cheng Guodong, Wu Qingbai. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet Railroad[J]. Cold Regions Science and Technology, 2009, 59(1): 3-11.
[22]  Zhang Shuliang, Gao Feng, Ning Baoying, et al.Analysis on the construction practices of transmission projects in permafrost regions in Canada and the United States[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 201-207. [张树良, 高峰, 宁宝英, 等. 加拿大、美国多年冻土地区输电工程建设经验浅析[J]. 冰川冻土, 2013, 35(1): 201-207.]
[23]  Lu Xianlong, Cheng Yongfeng. Current status and prospect of transmission tower foundation engineering in China[J]. Electric Power Construction, 2005, 26(11): 25-28. [鲁先龙, 程永峰. 我国输电线路基础工程现状与展望[J]. 电力建设, 2005, 26(11): 25-28.]
[24]  Tan Qinghai, Tong Wu, Wu Haiyang,et al. Application of hot rod technology in Qinghai-Tibet DC Project[J]. North China Electric Power, 2012(2): 16-19. [谭青海, 童武, 吴海洋, 等. 热棒技术在青藏直流工程中的应用[J]. 华北电力技术, 2012(2): 16-19.]
[25]  Holman J P. Heat Transfer[M]. Original 10th ed. Beijing: China Machine Press, 2011. [霍尔曼J P. 传热学[M]. 原10版. 北京: 机械工业出版社, 2011.]
[26]  Yang Shiming. Heat Transfer[M]. Beijing: Higher Education Press, 2010. [杨世铭. 传热学[M]. 北京: 高等教育出版社, 2010.]
[27]  Zhang Mingyi. Study on Long-Term Thermal Stability of Air-Cooled Subgrade in Permafrost Regions[D]. PhD Thesis, Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2007. [张明义. 多年冻土区气冷路基长期热稳定性研究[D]. 博士论文, 兰州: 中国科学院寒区旱区环境与工程研究所, 2007.]
[28]  Lai Yuanming, Zhang Mingyi, Li Shuangyang. Theory and Application of Cold Regions Engineering[M]. Beijing: Science Press, 2009. [赖远明, 张明义, 李双洋. 寒区工程理论与应用[M]. 北京: 科学出版社, 2009.]
[29]  Chen Zhaoyu, Li Guoyu, Mu Yanhu, et al. Research on thermal stability of fabricated foundation with different warming patterns in permafrost regions[J]. China Earthquake Engineering Journal, 2014. [陈赵育, 李国玉, 穆彦虎, 等. 不同升温模式下冻土区装配式基础热稳定性研究[J]. 地震工程学报, 2014.]
[30]  Chen Zhaoyu, Li Guoyu, Mu Yanhu, et al. Impact of molding temperature and hydration heat on thermal properties of pile foundation in permafrost regions along the Qinghai-Tibet DC Interconnection Project[J]. Journal of Glaciology and Geocryology, 2014. [陈赵育, 李国玉, 穆彦虎, 等. 入模温度和水化热对青藏直流联网工程冻土桩基温度特性影响研究[J]. 冰川冻土, 2014.]
[31]  Jin Long. Study on Cooling Effect and Design Method of Thermosyphon Embankment in Permafrost Regions[D]. PhD Thesis, Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2013. [金龙. 多年冻土区热管路基降温效能分析与设计方法研究[D]. 博士论文, 兰州: 中国科学院寒区旱区环境与工程研究所, 2013.]
[32]  Wu Junjie, Ma Wei, Sun Zhizhong, et al. Evaluating cooling effect of two-phase closed thermosyphon by estimated heat budget[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 106-115. [武俊杰, 马巍, 孙志忠, 等. 用估算热收支的方法评价热棒制冷效果[J]. 冰川冻土, 2010, 32(1): 106-115.]
[33]  Zhang Mingyi, Lai Yuanming, Zhang Jianming, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65: 203-210.
[34]  Zhou Yong, Dong Xianfu, Zhang Bo, et al. Experimental study on the cooling effect of heat pipe along the Chaidaer-Muli Railway[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 688-694. [周勇, 董献付, 张波, 等. 柴达尔-木里铁路冻土路基热棒冷却效果的试验研究[J]. 冰川冻土, 2009, 31(4): 688-694.]
[35]  Xu Xuezu, Wang Jiacheng, Zhang Lixin. Physics of Frozen Soil[M]. Beijing: Science Press, 2001: 75-82. [徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001: 75-82.]
[36]  Zhu Linnan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 8-14. [朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1): 8-14.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133