全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

祁连山老虎沟12号冰川微粒在沉积后过程的变化特征

DOI: 10.7522/j.issn.1000-0240.2014.0166, PP. 1394-1402

Keywords: 老虎沟12号冰川,不溶性微粒,可溶性离子,沉积后过程,淋溶

Full-Text   Cite this paper   Add to My Lib

Abstract:

2008年10月和2009年10月在祁连山老虎沟12号冰川积累区采集了2个雪坑样品,通过样品中δ18O、可溶性离子、不溶性微粒的变化特点划分了雪坑季节.2008年雪坑季节变化信号明显,而2009年雪坑不明显,微粒浓度、Ca2+与Mg2+含量在春季较高.离子平衡、pH值、电导率及同期气象记录观测资料均显示,2009年雪坑受淋溶影响较大.淋溶强烈时,受融水造成的粉尘溶解及离子淋溶的影响,雪坑中微粒与Ca2+、Mg2+变化趋势不甚一致;与Ca2+相比,Mg2+变化能够较好表征微粒的变化;d>5μm的微粒可能更易于溶解迁移.通过分析室内雪冰样品在液态下的变化,发现伴随静置过程微粒的质量浓度呈下降的趋势,期间Ca2+、Mg2+却呈现增加的变化,可能与碳酸盐矿物的溶解有关.

References

[1]  Shi Yafeng. Glaciers and Their Environments in China: The Present, Past and Future[M]. Beijing: Science Press, 2000: 132-155. [施雅风. 中国冰川与环境: 现在、过去和未来[M]. 北京: 科学出版社, 2000: 132-155.]
[2]  Gong Xiaoqian, Wu Guangjian, Zhang Chenglong, et al. Dust change over the Tibetan Plateau in recent years using ice core records and satellite remote sensing data[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 257-266. [宫晓倩, 邬光剑, 张成龙, 等. 基于冰芯记录与遥感数据的近期青藏高原粉尘变化研究[J]. 冰川冻土, 2012, 34(2): 257-266.]
[3]  Niu Hewen, He Yuanqing. Characteristics of the microparticles in atmospheric precipitation around the Mt. Yulong[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 71-79. [牛贺文, 何元庆. 玉龙雪山地区大气降水中粉尘颗粒物特征研究[J]. 冰川冻土, 2014, 36(1): 71-79.]
[4]  Wake C P, Dibb J E, Mayewski P A, et al. The chemical composition of aerosols over eastern Himalaya and Tibetan Plateau during low dust periods[J]. Atmospheric Environment, 1994, 28: 695-704.
[5]  Tian L, Yao T, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(D9): 4293-4302.
[6]  Zhang Xinping, Shi Yafeng, Yao Tandong. Variational features of precipitation δ18O in northeast Qinghai-Tibet Plateau[J]. Science in China (Series B), 1995, 38(7): 854-864. [章新平, 施雅风, 姚檀栋. 青藏高原东北部降水中δ18O的变化特征[J]. 中国科学(B辑), 1995, 25(5): 540-547.]
[7]  Wang Ninglian. Decrease trend of dust event frequency over the past 200 years recorded in the Malan ice core from the northern Tibetan Plateau[J]. Chinese Science Bulletin, 2006, 50(24): 2866-2871. [王宁练. 青藏高原北部马兰冰芯记录所揭示的近200年来沙尘天气发生频率变化趋势[J]. 科学通报, 2006, 51(6): 724-729.]
[8]  Xu J, Wang Z, Yu G, et al. Seasonal and diurnal variations in aerosol concentrations at a high-altitude site on the northern boundary of Qinghai-Xizang Plateau[J]. Atmospheric Research, 2013, 120/121: 240-248.
[9]  Wang Zebin, Xu Jianzhong, Yu Guangming, et al. The characteristics of soluble ions in PM2.5 aerosol over the Qilian Shan Station of Glaciology and Ecologic Environment[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 336-344. [王泽斌, 徐建中, 余光明, 等. 祁连山大雪山地区大气PM2.5细粒子中可溶性离子特征[J]. 冰川冻土, 2013, 35(2): 336-344.]
[10]  Yu Guangming, Xu Jianzhong, Kang Shichang, et al. Mineral and elemental characteristics of microparticles with different size fraction in snowpits from Zadang Glacier[J]. Journal of Environmental Science, 2011, 32(11): 3264-3270. [余光明, 徐建中, 康世昌, 等. 扎当冰川雪坑中不同粒径微粒元素和矿物组成特征[J]. 环境科学, 2011, 32(11): 3264-3270.]
[11]  Cong Z, Kang S, Qin D. Seasonal features of aerosol particles recorded in snow from Mt. Qomolangma (Everest) and their environmental implications[J]. Journal of Environmental Sciences, 2009, 21(7): 914-919.
[12]  Sun J, Qin D, Mayewski P A, et al. Soluble species in aerosol and snow and their relationship at Glacier 1, Tien Shan, China[J]. Journal of Geophysical Research, 1998, 103(D21): 28021-28028.
[13]  Brimblecombe P, Tranter M, Abrahams P W, et al. Relocation and preferential elution of acidic solute through the snowpack of a small, remote, high-altitude Scottish catchment[J]. Annals of Glaciology, 1985, 7: 141-147.
[14]  Chou L, Garrels R M, Wollast R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals[J]. Chemical Geology, 1989, 78(3/4): 269-282.
[15]  Honrath R E, Peterson M C, Dziobak M P, et al. Release of NOx from sunlight-irradiated midlatitude snow[J]. Geophysical Research Letters, 2000, 27(15): 2237-2240.
[16]  Xu J, Yu G, Kang S, et al. Sr-Nd isotope evidence for modern aeolian dust sources in mountain glaciers of western China[J]. Journal of Glaciology, 2012, 58(211): 859-865.
[17]  Eichler A, Schwikowski M, G?ggeler H W. Meltwater-induced relocation of chemical species in Alpine firn[J]. Tellus B, 2001, 53(2): 192-203.
[18]  Winski D, Kreutz K, Osterberg E, et al. High-frequency observations of melt effects on snowpack stratigraphy, Kahiltna Glacier, Central Alaska Range[J]. Hydrological Processes, 2012, 26(17): 2573-2582.
[19]  Wong G J, Hawley R L, Lutz E R, et al. Trace-element and physical response to melt percolation in Summit (Greenland) snow[J]. Annals of Glaciology, 2013, 54: 52-62.
[20]  Hou Shugui, Qin Dahe. Preliminary study on the ion elution of snowpacks over Qinghai-Xizang Pleatau[J]. Journal of Glaciology and Geocryology, 1996, 18(S1): 75-82. [侯书贵, 秦大河. 青藏高原冰川雪层中淋溶作用的初步研究[J]. 冰川冻土, 1996, 18(S1): 75-82.]
[21]  Hou Shugui, Qin Dahe. The ion elution effect on the main ion profiles of the glacier snowpacks[J]. Scientia Geographica Sinica, 1999, 19(6): 536-542. [侯书贵, 秦大河. 积雪淋溶作用对冰川雪层内主要阴、阳离子记录的影响[J]. 地理科学, 1999, 19(6): 536-542.]
[22]  Hou Shugui. Preliminary results of ion elution experiments of winter snow at the headwaters of the Vrümqi River[J]. Journal of Glaciology and Geocryology, 2000, 22(4): 362-365. [侯书贵. 乌鲁木齐河源冬季积雪淋溶作用的实验结果[J]. 冰川冻土, 2000, 22(4): 362-365.]
[23]  Hou Shugui. The effect of post-depositional process on the chemical profiles of snow pits in the percolation zone[J]. Journal of Glaciology and Geocryology, 2001, 23(2): 185-188. [侯书贵. 沉积后过程对冰川渗浸带雪坑化学剖面的影响[J]. 冰川冻土, 2001, 23(2): 185-188.]
[24]  Zhang Ningning, He Yuanqing, Pang Hongxi, et al. Preliminary study of transformation of snow to ice and ion elution during ablation period at a typical temperate glacier region[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 505-513. [张宁宁, 何元庆, 庞洪喜, 等. 典型海洋型冰川区消融期雪坑层位演变及离子沉积后过程初探[J]. 冰川冻土, 2010, 32(3): 505-513.]
[25]  Li Z, Edwards R, Mosley-Thompson E, et al. Seasonal variability of ionic concentrations in surface snow and elution processes in snowfirn packs at the PGPI site on Vrümqi Glacier No.1, eastern Tien Shan, China[J]. Annals of Glaciology, 2006, 43(1): 250-256.
[26]  Wang F, Li Z, You X, et al. Seasonal evolution of aerosol stratigraphy in Vrümqi glacier No.1 percolation zone, eastern Tien Shan, China[J]. Annals of Glaciology, 2006, 43(1): 245-249.
[27]  You Xiaoni, Li Zhongqin, Wang Feiteng, et al. Seasonal evolution of insoluble microparticles stratigraphy in Glacier No.1 percolation zone, Eastern Tianshan, China[J]. Advances in Earth Science, 2006, 21(11): 1164-1170. [尤晓妮, 李忠勤, 王飞腾, 等. 乌鲁木齐河源1号冰川不溶微粒的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1164-1170.]
[28]  Kang Xingcheng, Ding Liangfu. Relation of mass balance, ELA and climate in Tianshan Moutain and Qilian Mountains[J]. Journal of Glaciology and Geocryology, 1981, 3(1): 53-56. [康兴成, 丁良福. 天山和祁连山的冰川物质平衡、雪线位置与天气气候的关系[J]. 冰川冻土, 1981, 3(1): 53-56.]
[29]  Qin Xiang, Cui Xiaoqing, Du Wentao, et al. Variations of the alpine precipitation during 1960-2006 recorded in Laohugou ice core in western Qilian Mountains, China[J]. Journal of Geographical Sciences, 2014, 69(5): 681-689. [秦翔, 崔晓庆, 杜文涛, 等. 祁连山老虎沟冰芯记录的高山区大气降水变化[J]. 地理学报, 2014, 69(5): 681-689.]
[30]  Trochkine D, Iwasaka Y, Matsuki A, et al. Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan[J]. Journal of Geophysical Research, 2003, 108(D23): 8642-8653.
[31]  Okada K, Kai K. Atmospheric mineral particles collected at Qira in the Taklamakan Desert, China[J]. Atmospheric Environment, 2004, 38(40): 6927-6935.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133