全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

祁连山疏勒河上游多年冻土区高寒草甸土壤CO2通量特征

DOI: 10.7522/j.issn.1000-0240.2014.0188, PP. 1572-1581

Keywords: 青藏高原,土壤CO2通量,年排放总量,Q10,冻融期,完全冻结期

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究青藏高原多年冻土区高寒草甸土壤CO2通量有助于准确估算该区域的土壤CO2排放,对认识高原土壤碳循环及其对全球气候变化的响应具有重要意义.利用静态箱-气相色谱法和LI-8100土壤CO2通量自动测量系统对疏勒河上游多年冻土区高寒草甸土壤CO2通量进行了定期观测,结合气象和土壤环境因子进行了分析.结果表明整个观测期高寒草甸土壤表现为CO2的源,土壤CO2通量的日变化范围为2.52~532.81mg·m-2·h-1.土壤CO2年排放总量为1429.88g·m-2,年均通量为163.23mg·m-2·h-1;其中,CO2通量与空气温度和相对湿度、活动层表层2cm、10cm、20cm、30cm土壤温度、含水量和盐分均显著相关.2cm土壤温度、空气温度和总辐射、空气温度、2cm土壤盐分分别是影响活动层表层2cm土壤完全融化期、冻结过程期、完全冻结期、融化过程期土壤CO2通量的最重要因子.在完全融化期、冻结过程期和整个观测期,拟合最佳的温度因子变化分别能够解释土壤CO2通量变化的72.0%、82.0%和38.0%,对应的Q10值分别为1.93、6.62和2.09.冻融期(含融化过程期和冻结过程期)和完全冻结期的土壤CO2排放量分别占年排放总量的15.35%和11.04%,在年排放总量估算中不容忽视.

References

[1]  Zhou Dangwei, Cao Guangmin, Zhang Jinxia, et al. CO2 flux characteristics from degenerated mat cryo-sod soil during plant growing period[J]. Chinese Journal of Applied Ecology, 2003, 14(3): 367-371. [周党卫, 曹广民, 张金霞, 等. 植物生长季退化草毡寒冻雏形土CO2释放特征[J]. 应用生态学报, 2003, 14(3): 367-371.]
[2]  Wang Junfeng, Wang Genxu, Wu Qingbai. Influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau[J]. China Environmental Science, 2009, 29(5): 474-480. [王俊峰, 王根绪, 吴青柏. 沼泽与高寒草甸退化对CH4和CO2通量的影响[J]. 中国环境科学, 2009, 29(5): 474-480.]
[3]  Zhan Xiaoyun, Yu Guirui, Zheng Zemei, et al. Carbon emission and spatial pattern of soil respiration of terrestrial ecosystems in China: Based on geostatistic estimation of flux measurement[J]. Progress in Geography, 2012, 31(1): 97-108. [展小云, 于贵瑞, 郑泽梅, 等. 中国区域陆地生态系统土壤呼吸碳排放及空间格局: 基于通量观测的地学统计评估[J]. 地理科学进展, 2012, 31(1): 97-108.]
[4]  Pavelka M, Acosta M, Marek M V, et al. Dependence of the Q10 values on the depth of soil temperature measuring point[J]. Plant Soil, 2007, 292: 171-179.
[5]  Rayment M B, Jarvis P G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest[J]. Soil Biology & Biochemistry, 2000, 32: 35-45.
[6]  Norman J M, Garcia R, Verma S B. Soil surface CO2 fluxes and the carbon budget of a grassland[J]. Journal of Geophysical Research, 1992, 97: 18845-18853.
[7]  Fahnestock J T, Jones M H, Welker J M. Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets[J]. Global Biogeochemical Cycle, 1999, 13(3): 775-779.
[8]  Wang Xuejia, Yang Meixue, Wan Guoning. Processes of soil thawing-freezing and features of ground temperature and moisture at D105 on the northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 56-63. [王学佳, 杨梅学, 万国宁. 藏北高原D105点土壤冻融状况与温湿特征分析[J]. 冰川冻土, 2012, 34(1): 56-63.]
[9]  Dore S, Hymus G J, Johnson D P, et al. Cross validation of open-top chamber and eddy covariance measurements of ecosystem CO2 exchange in a Florida scrub-oak ecosystem[J]. Global Change Biology, 2003, 9(1): 84-95.
[10]  Healy R W, Striegl R G, Russell T F, et al. Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: Identification of physical process[J]. Soil Science Society of America Journal, 1996, 60(3): 740-747.
[11]  Pei Zhiyong, Ouyang Hua, Zhou Caiping. A study on carbon fluxes from alpine grassland ecosystem on Tibetan Plateau[J]. Acta Ecologica Sinica, 2003, 23(2): 231-236. [裴志永, 欧阳华, 周才平. 青藏高原高寒草原碳排放及其迁移过程研究[J]. 生态学报, 2003, 23(2): 231-236.]
[12]  Wu Qin, Hu Qiwu, Cao Guangmin, et al. CO2 emission from an alpine Kobresia humilis meadow in winters[J]. Acta Ecologica Sinica, 2011, 31(18): 5107-5112. [吴琴, 胡启武, 曹广民, 等. 高寒矮嵩草草甸冬季CO2释放特征[J]. 生态学报, 2011, 31(18): 5107-5112.]
[13]  Zhao Liang, Xu Shixiao, Li Yingnian, et al. Relations between carbon dioxide fluxes and environmental factors of Kobresia humilis meadows and Potentilla fruticosa meadows[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(1): 133-142. [赵亮, 徐世晓, 李英年, 等. 青藏高原矮嵩草草甸和金露梅灌丛草甸CO2通量变化与环境因子的关系[J]. 西北植物学报, 2006, 26(1): 133-142.]
[14]  Kato T, Hirota M, Tang Y H, et al. Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan plateau[J]. Soil Biology & Biochemistry, 2005, 37: 1966-1969.
[15]  Tian Yuqiang, Gao Qiong, Zhang Zhicai, et al. The advances in study on plant photosynthesis and soil respiration of alpine grassland on the Tibetan Plateau[J]. Ecology and Environmental Sciences, 2009, 18(2): 711-721. [田玉强, 高琼, 张智才, 等. 青藏高原高寒草地植物光合与土壤呼吸研究进展[J]. 生态环境学报, 2009, 18(2): 711-721.]
[16]  Nan Z T, Li S X, Cheng G D. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China (Series D: Earth Sciences), 2005, 48(6): 797-804.
[17]  Tao Z, Shen C D, Gao Q Z, et al. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem[J]. Science in China (Series D: Earth Sciences), 2007, 50(7): 1103-1114.
[18]  Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change Biology, 2008, 14(7): 1592-1599.
[19]  Li Na, Wang Genxu, Gao Yongheng, et al. Research progress on soil organic carbon of alpine ecosystem in Qinghai-Tibet Plateau[J]. Soils, 2009, 41(4): 512-519. [李娜, 王根绪, 高永恒, 等. 青藏高原生态系统土壤有机碳研究进展[J]. 土壤, 2009, 41(4): 512-519.]
[20]  Wu Q B, Zhang T J, Liu Y Z. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) railway from 2006 to 2010[J]. The Cryosphere, 2012, 6(3): 607-612.
[21]  Luo Dongliang, Jin Huijun, Lin Lin, et al. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 538-546. [罗栋梁, 金会军, 林琳, 等. 青海高原中、东部多年冻土及寒区环境退化[J]. 冰川冻土, 2012, 34(3): 538-546.]
[22]  Yang Honglu, Qin Jihong, Sun Hui. A review: Response of soil CO2 and N2O emissions to freeze-thaw pattern change[J]. Soils, 2010, 42(4): 519-525. [杨红露, 秦纪洪, 孙辉. 冻融交替对土壤CO2及N2O释放效应的研究进展[J]. 土壤, 2010, 42(4): 519-525.]
[23]  Wang Guangshuai, Yang Xiaoxia, Ren Fei, et al. Non-growth season's greenhouse gases emission and its yearly contribution from alpine meadow on Tibetan Plateau of China[J]. Chinese Journal of Ecology, 2013, 32(8): 1994-2001. [王广帅, 杨晓霞, 任飞, 等. 青藏高原高寒草甸非生长季温室气体排放特征及其年度贡献[J]. 生态学杂志, 2013, 32(8): 1994-2001.]
[24]  Wang Junfeng, Wang Genxu, Wu Qingbai. A study of CO2 fluxes from the high-cold swamp meadows with different degradation on the hinterland of Tibetan Plateau during growing season[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 410-414. [王俊峰, 王根绪, 吴青柏. 青藏高原腹地不同退化程度高寒沼泽草甸生长季节CO2排放通量及其主要控制因子研究[J]. 冰川冻土, 2008, 30(3): 410-414.]
[25]  Liu W J, Chen S Y, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2012, 7(3). doi:10.1088/1748-9326/7/3/035401.
[26]  Sheng Yu, Li Jing, Wu Jichun, et al. Distribution patterns of permafrost in the upper area of Shule River with the application of GIS technique[J]. Journal of China University of Mining and Technology, 2010, 39(1): 32-39. [盛煜, 李静, 吴吉春, 等. 基于GIS的疏勒河流域上游多年冻土分布特征[J]. 中国矿业大学学报, 2010, 39(1): 32-39.]
[27]  Chen S Y, Liu W J, Qin X, et al. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin[J]. Environmental Research Letters, 2012, 7(4). doi:10.1088/1748-9326/7/4/045406.
[28]  Liu Wenjie, Chen Shengyun, Zhao Qian, et al. Main greenhouse gases emissions during plant growing season in permafrost region of the upper reaches of Shule River[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1149-1156. [刘文杰, 陈生云, 赵倩, 等. 疏勒河上游多年冻土区植物生长季主要温室气体排放观测[J]. 冰川冻土, 2012, 34(5): 1149-1156.]
[29]  Beijing Techno Solutions Limited. Products[EB/OL]. (2010-08-27)[2014-01-16]. http://www. technosolutions.cn. [北京天诺基业科技有限公司. 产品[EB/OL]. (2010-08-27)[2014-01-16].
[30]  Qi Y C, Dong Y S, Liu L X, et al. Spatial-temporal variation in soil respiration and its controlling factors in three steppes of Stipa L. in Inner Mongolia, China[J]. Science China: Earth Sciences, 2010, 53(5): 683-693.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133