Zhang Lianhai, Ma Wei, Yang Chengsong, et al. A review and prospect of the thermodynamics of soils subjected to freezing and thawing[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1505-1518. [张莲海, 马巍, 杨成松, 等. 土在冻结及融化过程中的热力学研究现状与展望[J]. 冰川冻土, 2013, 35(6): 1505-1518.]
[2]
Liu Shiwei, Zhang Jianming. Review on physic mechanical pro-perties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129. [刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129.]
[3]
Su Kai, Zhang Jianming, Liu Shiwei, et al. Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375. [苏凯, 张建明, 刘世伟, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375.]
[4]
Chen Jin, Li Dongqing, Bing Hui, et al. An experimental study of influence of water content on uniaxial compression strength of frozen salty silt[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 441-446. [陈锦, 李东庆, 邴慧, 等. 含水量对冻结含盐粉土单轴抗压强度影响的试验研究[J]. 冰川冻土, 2012, 34(2): 441-446.]
[5]
Tsytovich N A. The Mechanics of Frozen Ground[M]. New York: McGraw-Hill Company, 1975: 37-42.
[6]
Yoshikawa K, Overduin P P. Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology, 2005, 42: 250-256.
[7]
Bronfenbrener L, Korin E. Experimental studies of water crystallization in porous media[J]. Chemical Engineering and Processing, 2002, 41(4): 357-363.
[8]
Kozlowski T. A comprehensive method of determining the soil unfrozen water curves: 1. Application of the term of convolution[J]. Cold Regions Science and Technology, 2003, 36: 71-79.
[9]
Kozlowski T. A comprehensive method of determining the soil unfrozen water curves: 2. Stages of the phase change process in frozen soil-water system[J]. Cold Regions Science and Technology, 2003, 36: 81-92.
[10]
Watanabe K, Mizoguchi M. Amount of unfrozen water in frozen porous media saturated with solution[J]. Cold Regions Science and Technology, 2002, 34(2): 103-110.
[11]
Swenson J, Bergman R, Longeville S. Experimental support for dynamic transition of confined water[J]. Journal of Non-Crystalline Solids, 2002, 307/308/309/310: 573-578.
[12]
Fen-Chong T, Fabbri A. Freezing and thawing porous media: experimental study with a dielectric capacitive method[J]. Comptes Rendus Mecanique, 2005, 333(5): 425-430.
[13]
Fabbri A, Fen-Chong T, Coussy O. Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials[J]. Cold Regions Science and Technology, 2006, 44(1): 52-66.
[14]
Tice A R, Burrous C M, Anderson D M. Determination of unfrozen water in frozen soil by pulsed nuclear magnetic resonance[C]//Proceedings of 3rd International Conference on Permafrost. Ottawa, Canada: National Research Council of Canada, 1978: 149-155.
[15]
Tice A R, Burrous C M, Anderson D M. Phase composition measurements on soils at very high water contents by the pulsed nuclear magnetic resonance technique[J]. Transportation Research Record, 1978, 675(3): 11-14.
[16]
Tice A R, Oliphant J L, Zhu Yuanlin, et al. Relationship between the ice and unfrozen water phase in frozen soils as determined by pulsed nuclear resonance and physical desorption data[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 37-46. [泰斯A R, 奥利丰特J L, 朱元林, 等. 用脉冲核磁共振法及物理解吸试验测定的冻土中冰和未冻水之间的关系[J]. 冰川冻土, 1983, 5(2): 37-46.]
Cengel Y A. Heat Transfer[M]. Beijing: Higher Education Press, 2007: 143-144.
[19]
Liu Bo, Li Dongyang. Test study of unfrozen water content in artificial frozen silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3696-3702. [刘波, 李东阳. 人工冻结粉土未冻水含量测试实验研究[J]. 岩石力学与工程学报, 2012, 31(S2): 3696-3702.]
[20]
Liu Bo, Li Dongyang. A simple test method to measure unfrozen water content in clay-water systems[J]. Cold Regions Science and Technology, 2012, 78: 97-106.