全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

利用SEBAL和改进的SEBAL模型估算黑河中游戈壁、绿洲的蒸散发

DOI: 10.7522/j.issn.1000-0240.2014.0183, PP. 1526-1537

Keywords: 蒸散发,SEBAL,改进的SEBAL,温度-植被指数,黑河

Full-Text   Cite this paper   Add to My Lib

Abstract:

蒸散发是干旱、半干旱地区内陆河流域水分消耗的主要途径,利用遥感估算流域尺度上的蒸散发对内陆河流域水循环和水资源的合理利用具有重要的指导意义.基于2012年开展的黑河流域生态-水文过程综合遥感观测联合试验(HiWATER)的观测资料和高分辨率的ASTER影像,分别利用SEBAL模型和改进的SEBAL(M-SEBAL)模型估算黑河中游不同时期戈壁、绿洲等不同下垫面的蒸散发,通过涡动观测数据对比分析了SEBAL模型和M-SEBAL模型估算戈壁、绿洲蒸散发的精度.结果表明SEBAL模型在绿洲低估感热通量,高估潜热通量;在戈壁高估感热通量,低估潜热通量.M-SEBAL模型充分考虑不同下垫面地表辐射温度与植被覆盖度之间的关系,能很好地反映不同植被覆盖区域的湍流通量的异质性,估算黑河中游戈壁、绿洲蒸散发的精度高于SEBAL模型.

References

[1]  Sobrino J A, Jiménez J C, S ria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2): 316-327.
[2]  Ren H Z, Liang S L, Yan G J, et al. Empirical algorithms to map global broadband emissivities over vegetated surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2619-2631.
[3]  Brutsaert W. On a derivable formula for long-wave radiation from clear skies[J]. Water Resources Research, 1975, 11(5): 742-744.
[4]  Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): Model[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4): 380-394.
[5]  Moran M, Clarke T, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment, 1994, 49(3): 246-263.
[6]  Kustas W, Anderson M. Advances in thermal infrared remote sensing for land surface modeling[J]. Agricultural and Forest Meteorology, 2009, 149(12): 2071-2081.
[7]  Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3): 241-252.
[8]  Xu Z, Liu S, Li X, et al. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 13140-13157.
[9]  Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1291-1306.
[10]  Wang Jiemin, Gao Youxi, Hu Yinqiao, et al. An overview of the HEIFE experiments in the People's Republic of China[M]//Exchange Processes at the Land Surface for a Range of Space and Time Scales. Wallingford, Eng.: IAHS Press, 1993: 397-406.
[11]  Wang Jiemin, Wang Weizhen, Liu Shaomin, et al. The problems of surface energy balance closure: An overview and case study[J]. Advances in Earth Science, 2009, 24(7): 705-713. [王介民, 王维真, 刘绍民, 等. 近地层能量平衡闭合问题: 综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713.]
[12]  Stannard D, Blanford J, Kustas W, et al. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon'90 experiment[J]. Water Resources Research, 1994, 30(5): 1227-1239.
[13]  Blanken P, Black T A, Yang P, et al. Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D24): 28915-28927.
[14]  Twine T E, Kustas W, Norman J, et al. Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology, 2000, 103(3): 279-300.
[15]  Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498. [李新, 刘绍民, 马明国, 等. 黑河流域生态-水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.]
[16]  Bastiaanssen W G M, Noordman E, Pelgrum H, et al. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(1): 85-93.
[17]  Frey C M, Parlow E. Flux measurements in Cairo. Part 2: On the determination of the spatial radiation and energy balance using ASTER satellite data[J]. Remote Sensing, 2012, 4(9): 2635-2660.
[18]  Jiménez J C, Sobrino J A. Feasibility of retrieving land-surface temperature from ASTER TIR bands using two-channel algorithms: A case study of agricultural areas[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 60-64.
[19]  Monteith J L. Evaporation and environment[C]//19th Symposia of the Society for Experimental Biology. Cambridge, Eng.: Cambridge University Press, 1964: 205-234.
[20]  Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[J]. Journal of Hydrology, 1998, 212(1/2/3/4): 198-212.
[21]  Menenti M, Choudhury B J. Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range[M]//Exchange Processes at the Land Surface for a Range of Space and Time Scales. Wallingford, Eng.: IAHS Press, 1993: 561-568.
[22]  Roerink G J, Su Z, Menenti M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(2): 147-157.
[23]  Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-99.
[24]  Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
[25]  Long D, Singh V P. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[J]. Remote Sensing of Environment, 2012, 121: 370-388.
[26]  Allen R, Irmak A, Trezza R, et al. Satellite-based ET estimation in agriculture using SEBAL and METRIC[J]. Hydrological Processes, 2011, 25(26): 4011-4027.
[27]  Bhattarai N, Dougherty M, Marzen L J, et al. Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States[J]. Remote Sensing Letters, 2012, 3(6): 511-519.
[28]  Papadavid G, Hadjimitsis D, Toulios L, et al. A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions[J]. Water Resources Management, 2013, 27(9): 3493-3506.
[29]  Paul G, Gowda P H, Prasad P V V, et al. Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08[J]. Advances in Water Resources, 2013, 59: 157-168.
[30]  Yang Y T, Shang S H, Jiang L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China[J]. Agricultural and Forest Meteorology, 2012, 164: 112-122.
[31]  Long D, Singh V P, Li Z-L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D21). doi:10.1029/2011JD016542.
[32]  Gao Z Q, Liu C S, Gao W, et al. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain[J]. Hydrology and Earth System Sciences, 2011, 15(1): 119-139.
[33]  Morton C G, Huntington J L, Pohll G M, et al. Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC[J]. Journal of the American Water Resources Association, 2013, 49(3): 549-562.
[34]  Allen R G, Burnett B, Kramber W, et al. Automated calibration of the METRIC-Landsat evapotranspiration process[J]. Journal of the American Water Resources Association, 2013, 49(3): 563-576.
[35]  Feng J, Wang Z. A satellite-based energy balance algorithm with reference dry and wet limits[J]. International Journal of Remote Sensing, 2013, 34(8): 2925-2946.
[36]  Long D, Singh V P. A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework[J]. Water Resources Research, 2012, 48(2). doi:10.1029/2011WR010607.
[37]  Cheng Guodong, Xiao Honglang, Xu Zhongmin, et al. Water issue and its countermeasure in the inland river basins of Northwest China[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 406-413. [程国栋, 肖洪浪, 徐中民, 等. 中国西北内陆河水问题及其应对策略: 以黑河流域为例[J]. 冰川冻土, 2006, 28(3): 406-413.]
[38]  Ding Hongwei, Hu Xinglin, Lan Yongchao, et al. Characteristics and conversion of water resources in the Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1460-1469. [丁宏伟, 胡兴林, 蓝永超, 等. 黑河流域水资源转化特征及其变化规律[J]. 冰川冻土, 2012, 34(6): 1460-1469.]
[39]  Xu Fengying, Ge Yingchun, Xu Zhongmin, et al. A review of evaluation methods of crop water productivity[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 156-163. [徐凤英, 盖迎春, 徐中民, 等. 作物水生产力评估方法研究[J]. 冰川冻土, 2013, 35(1): 156-163.]
[40]  Ge Yingchun, Li Xin. Water resources management decision support system: Review and prospect[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1248-1256. [盖迎春, 李新. 水资源管理决策支持系统研究进展与展望[J]. 冰川冻土, 2012, 34(5): 1248-1256.]
[41]  Liu Suhua, Wang Weizhen, Kobayashi T. The evaporation from irrigation channels estimated by energy balance method in the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 80-87. [刘素华, 王维真, 小林哲夫. 基于能量平衡法的黑河中游灌溉渠道蒸发量估算[J]. 冰川冻土, 2014, 36(1): 80-87.]
[42]  Li X, Cheng G D, Liu S M, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133