Steen-Larsen H, Johnsen S J, Masson-Delmotte V, et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet[J]. Atmospheric Chemistry and Physics, 2013, 13 (9): 4815-4828.
[2]
Risi C, Bony S, Vimeux F, et al. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation[J]. Journal of Geophysical Research: Atmospheres, 2010, 115 (D24). doi:10.1029/2010JD014690.
[3]
Risi C, Bony S, Vimeux F, et al. Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records[J]. Journal of Geophysical Research: Atmospheres, 2010, 115 (D12). doi:10.1029/2009JD013255.
[4]
Jouzel J, Merlivat L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research: Atmospheres, 1984, 89 (D7): 11749-11757.
[5]
Werner M, Langebroek P M, Carlsen T, et al. Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale[J]. Journal of Geophysical Research: Atmospheres, 2011, 116 (D15). doi:10.1029/2011JD015681.
[6]
Lin Shian-Jiann, Rood R B. Multidimensional flux-form semi-Lagrangian transport schemes[J]. Monthly Weather Review, 1996, 124 (9): 2046-2070.
[7]
Tompkins A M. A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover[J]. Journal of the Atmospheric Sciences, 2002, 59 (12): 1917-1942.
[8]
Lohmann U, Roeckner E. Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model[J]. Climate Dynamics, 1996
[9]
Hoffmann G, Werner M, Heimann M. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years[J]. Journal of Geophysical Research, 1998, 103 (D14): 16871-16816.
[10]
Kurita N. Origin of Arctic water vapor during the ice-growth season[J]. Geophysical Research Letters, 2011, 38 (2). doi:10.1029/2010GL046064.
[11]
Ciais P, White J W C, Jouzel J, et al. The origin of present-day Antarctic precipitation from surface snow deuterium excess data[J]. Journal of Geophysical Research, 1995, 100 (D9): 18917-18918.
[12]
James I N. The Antarctic drainage flow: Implications for hemispheric flow on the Southern Hemisphere[J]. Antarctic Science, 1989, 1 (3): 279-290.
[13]
King J C, Turner J. Antarctic Meteorology and Climatology[M]. Cambridge, Eng.: Cambridge University Press, 1997.
[14]
Connolley W M, King J C. A modeling and observational study of East Antarctic surface mass balance[J]. Journal of Geophysical Research: Atmospheres, 1996, 101 (D1): 1335-1343.
[15]
Delaygue G, Masson V, Jouzel J, et al. The origin of Antarctic precipitation: a modelling approach[J]. Tellus B, 2000, 52 (1): 19-36.
[16]
Sodemann H, Stohl A. Asymmetries in the moisture origin of Antarctic precipitation[J]. Geophysical Research Letters, 2009, 36 (22). doi:10.1029/2009GL040242.
[17]
Wang Yetang, Sodemann H, Hou Shugui, et al. Snow accumulation and its moisture origin over Dome Argus, Antarctica[J]. Climate Dynamics, 2013, 40 (3/4): 731-742.
[18]
Ding Minghu, Xiao Cunde, Liu Jingfeng, et al. The boungdary of moisture sources from coast to Dome area, Antarctica[J]. (in manuscript) [丁明虎, 效存德, 柳景峰, 等. 东南极冰盖海岸到冰穹水汽来源界限初探[J]. (撰稿中)]
[19]
Xiao Cunde, Li Yuansheng, Hou Shugui, et al. Preliminary evidence indicating Dome A (Antarctic) satisfying preconditions for drilling the oldest ice core[J]. Chinese Science Bulletin, 2008, 53 (1): 102-106. [效存德, 李院生, 侯书贵, 等. 南极冰盖最高点满足钻取最古老冰芯的必要条件: Dome A最新实测结果[J]. 科学通报, 2007, 52 (20): 2456-2460.]
[20]
Dansgaard W. The abundance of O18 in atmospheric water and water vapour[J]. Tellus, 1953, 5(4): 461-469.
[21]
Jouzel J. Water stable isotopes: Atmospheric composition and applications in polar ice core studies[M]//Treatise on Geochemistry: Vol.4. Amsterdam, the Netherlands: Elsevier, 2003: 213-243.
[22]
Noone D, Galewsky J, Sharp Z D, et al. Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D22). doi:10.1029/2011JD015773.
[23]
Sturm C, Zhang Qiong, Noone D. An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology[J]. Climate of the Past, 2010, 6(1): 115-129.
[24]
He Yuanqi, Pang Hongxi, Lu Aigang, et al. Spatial and temporal variations of the stable isotopes in snowpacks and glacial runoff in different types of glacier areas in China[J]. Journal of Glaciology and Geocryology, 2006, 28(1): 22-28. [何元庆, 庞洪喜, 卢爱刚, 等. 中国西部不同类型冰川区积雪及其融水径流中稳定同位素比率的时空变化及其气候效应[J]. 冰川冻土, 2006, 28(1): 22-28.]
[25]
Wu Jingkui, Ding Yongjian, Wang Genxu, et al. Advance on application of isotopic techniques in water sciences in cold and arid regions[J]. Journal of Glaciology and Geocryology, 2004, 26 (4): 509-516. [吴锦奎, 丁永建, 王根绪, 等. 同位素技术在寒旱区水科学中的应用进展[J]. 冰川冻土, 2004, 26 (4): 509-516.]
[26]
Yu Wusheng, Yao Tandong, Tian Lide, et al. Isotopic composition of atmospheric water vapor before and after the monsoon's end in the Nagqu River basin[J]. Chinese Science Bulletin, 2005, 50 (23): 2755-2760. [余武生, 姚檀栋, 田立德, 等. 那曲河流域季风结束前后大气水汽中δ18O变化特征[J]. 科学通报, 2006, 51 (2): 194-199.]
[27]
Zhang Xinping, Sun Zhi'an, Guan Huade, et al. GCM simulation of stable water isotope in water cyele and intercomparisons over East Asia[J]. Journal of Glaciology and Geocryology, 2012, 33 (6): 1274-1285. [章新平, 孙治安, 关华德, 等. 东亚水循环中水稳定同位素的GCM模拟和相互比较[J]. 冰川冻土, 2012, 33 (6): 1274-1285.]
[28]
Bolin B. On the Use of Tritium as a Tracer for Water in Nature[R]. Stockholm, Sweden: International Meteorological Insttitute, 1959.
Crosson E R, Ricci K N, Richman B A, et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath[J]. Analytical Chemistry, 2002, 74 (9): 2003-2007.
[31]
Liu Jingfeng, Xiao Cunde, Ding Minghu, et al. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range[J]. Journal of Environmental Sciences, 2014, 26 (11): 2266-2276.