Che Tao, Li Xin, Mool P K, et al. Monitoring glaciers and associated glacial lakes on the east slopes of Mount Xixiabangma from remote sensing images[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 801-805. [车涛, 李新, Mool P K, 等. 希夏邦马峰东坡冰川与冰川湖泊变化遥感监测[J]. 冰川冻土, 2005, 27(6): 801-805.]
[3]
IPCC. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers[R]. New York: Cambridge University Press, 2013: 1-28.
[4]
Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340: 852-857.
[5]
Su Zhen, Wang Zhichao. The advance and retreat fluctuation of modern glaciers and their response to the climatic changes in the Karakorum-Kunlun Mts.[C]//Symposium on the Tibetan Plateau and Global Change. Beijing: China Meteorological Press, 1995: 80-87. [苏珍, 王志超. 喀喇昆仑山-昆仑山现代冰川进退变化及其对气候波动的响应[C]//青藏高原与全球变化研讨会论文集. 北京: 气象出版社, 1995: 80-87.]
[6]
Li Baolin, Zhang Yichi, Zhou Chenghu. Remote sensing detection for glacier changes in Tianshan Mountains for the past 40 years[J]. Journal of Geographical Sciences, 2004, 14(3): 296-302.
[7]
Gu Yanling, Shi Xuewei, Zhu Jianbo, et al. Vertical distribution pattern of the archaea community within the permafrost active layer in front of the Glacier No.1 at headwaters of Vrümqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 761-769. [顾燕玲, 史学伟, 祝建波, 等. 天山乌鲁木齐河源1号冰川前沿冻土活动层古菌群落的垂直分布格局[J]. 冰川冻土, 2013, 35(3): 761-769.]
[8]
Zhang Guofei, Li Zhongqin, Wang Wenbin, et al. Change pro-cesses and characteristics of mass balance of the Vrümqi Glacier No.1 at the headwater of the Vrümqi River, Tianshan Mountains, during 1959-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 1301-1309. [张国飞, 李忠勤, 王文彬, 等. 天山乌鲁木齐河源1号冰川1959-2009年物质平衡变化过程及特征研究[J]. 冰川冻土, 2012, 34(4): 1301-1309.]
[9]
Dong Zhiwen, Qin Dahe, Ren Jiawen, et al. Variations in the equilibrium line altitude of Vrümqi Glacier No.1, Tianshan Mountains, over the past 50 years[J]. Chinese Science Bulletin, 2012, 57(36): 4776-4783.
[10]
Feng Fang, Feng Qi, Liu Xiande, et al. A study of hydrochemical characteristics of meltwater runoff of the Vrümqi Glacier No.1, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 183-191. [冯芳, 冯起, 刘贤德, 等. 天山乌鲁木齐河源1号冰川融水径流水化学特征研究[J]. 冰川冻土, 2014, 36(1): 183-191.]
[11]
Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glacier and snow cover to climate change in Xinjiang (II): Hazards effects[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1355-1370. [沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候的响应(II): 灾害效应[J]. 冰川冻土, 2013, 35(6): 1355-1370.]
[12]
Lai Zuming, Cao Zhentang, Liu Chaohai, et al. Glacier Inventory of China III: Tienshan Mountains: Interior Drainage Area of Junggar Basin in Northwest[M]. Beijing: Science Press, 1986: 1-201. [赖祖铭, 曹真堂, 刘潮海, 等. 中国冰川编目III: 天山山区: 西北部准格尔内流区[M]. 北京: 科学出版社, 1986: 1-201.]
[13]
Zou Quan, Wang Guoya, He Bin, et al. Responding of summer runoff and flood processes to extreme climate event in Manas River basin, Tianshan Mountains during 1957-2010[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 733-740. [邹全, 王国亚, 贺斌, 等. 1957-2010年天山玛纳斯河流域夏季径流及洪水过程对极端气候事件的响应[J]. 冰川冻土, 2013, 35(3): 733-740.]
[14]
Li Xuemei, Li Lanhai, Bai Lei, et al. Reconstruction of climatic data in the Kaidu River basin based on climatic data of Central Asia[J]. Journal of Natural Resources, 2012, 27(11): 1918-1930. [李雪梅, 李兰海, 白磊, 等. 基于中亚气候数据的开都河流域历史气候资料重建[J]. 自然资源学报, 2012, 27(11): 1918-1930.]
[15]
Zhang Yichi, Li Baolin, Cheng Weiming, et al. Hydrological response of runoff to climate variation in Kaidu catchment[J]. Resource Sciences, 2004, 26(6): 69-76. [张一驰, 李宝林, 程维明, 等. 开都河流域径流对气候变化的响应研究[J]. 资源科学, 2004, 26(6): 69-76.]
[16]
Guo Wanqin, Liu Shiyin, Xu Junli, et al. Monitoring recent surging of the Yulinchuan Glacier on north slopes of Muztag Range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774. [郭万钦, 刘时银, 许君利, 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012, 34(4): 765-774.]
[17]
Frey H, Paul F, Strozzi T. Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results[J]. Remote Sensing of Environment, 2012, 124: 832-843.
[18]
Xu Junli, Zhang Shiqiang, Han Haidong, et al. Change of the surface velocity of Koxkar Baxi Glacier interpreted from remote sensing data, Tianshan Mountain[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 268-275. [许君利, 张世强, 韩海东, 等. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析[J]. 冰川冻土, 2011, 33(2): 268-275.]
[19]
Guo Wanqin, Liu Shiyin, Yu Pengchun, et al. Automatic extraction of ridgelines using on drainage boundaries and aspect difference[J]. Science of Surveying and Mapping, 2011, 36(6): 210-212. [郭万钦, 刘时银, 余蓬春, 等. 利用流域边界和坡向差自动提取山脊线[J]. 测绘科学, 2011, 36(6): 210-212.]
[20]
Paul F, K??b A, Maisch M, et al. The new remote-sensing-derived Swiss glacier inventory: I. Methods[J]. Annals of Glaciology, 2002, 34: 355-361.
[21]
Krenke A N. Mass Exchange of Glacier Systems in Territory of USSR Territory[M]. Leningrad, USSR: Hydrome-teoizdat, 1982: 1-288.
[22]
Ding Y, Liu S, Li J, et al. The retreat of glaciers in response to recent climate warming in western China[J]. Annals of Glaciology, 2006, 43: 97-105.