全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2015 

季风区长沙站大气水汽和降水中δ18O的模拟

DOI: 10.7522/j.issn.1000-0240.2015.0028, PP. 249-257

Keywords: 季风区,稳定同位素,iAWBM,模拟,分馏

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用稳定同位素大气水平衡模式(iAWBM)模拟了季风区长沙站大气水汽和降水中δ18O的时间变化,并与实际监测结果进行比较,其目的在于检验iAWBM在模拟季风区大气中水稳定同位素循环方面的能力,揭示影响水稳定同位素变化的主要原因,改善对季风区水循环中稳定同位素效应的理解和认识.模拟结果很好地再现了长沙降水中δ18O的季节变化,季风区降水中稳定同位素雨季被贫化旱季被富集的基本特点以及存在的显著降水量效应均被模拟出.在2010年1月-2012年12月,模拟的冬季风盛行期间的加权平均δ18O为-6.58‰,与该时段的实际监测值相当;模拟的夏季风盛行期间的加权平均δ18O为-9.58‰,低于该时段的实际监测值.iAWBM主要利用大气的可降水量、水汽通量、蒸发量和降水量4个驱动变量来模拟水稳定同位素的循环.其中,可降水量对水稳定同位素变化的贡献被包含在其他3个驱动变量中.水汽通量对水汽同位素变化的贡献具有富集和贫化的双重作用,蒸发量和降水量对水汽同位素变化的贡献分别具有富集和贫化的作用.在对水汽同位素起富集作用的两个因子中,水汽通量的平均同位素贡献为1.66‰,贡献率为63.97%;蒸发量的平均同位素贡献为0.91‰,贡献率为36.03%,水汽通量的同位素贡献起主要作用.在对水汽同位素起贫化作用的两个因子中,水汽通量的平均同位素贡献为-1.40‰,贡献率为53.47%;降水量的平均同位素贡献为-1.09‰,贡献率为46.53%,水汽通量和降水量的同位素贡献大致相当.

References

[1]  Hoffmann G, Werner M, Heimann M. Water isotope module of the ECHAM atmospheric general circulation model:A study on timescales from days to several years[J]. Journal of Geophysical Research, 1998, 103(D14):16871-16896.
[2]  Lee J E, Fung I, DePaolo D J, et al. Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model[J]. Journal of Geophysical Research, 2007, 112(D16). doi:10.1029/2006JD007657.
[3]  Noone D C, Simmonds I. Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979-95[J]. Journal of Climate, 2002, 15(22):3150-3169.
[4]  Tindall J C, Valdes P J, Sime L C. Stable water isotopes in HadCM3:Isotopic signature of El Ni?o-Southern Oscillation and the tropical amount effect[J]. Journal of Geophysical Research, 2009, 114(D4). doi:10.1029/2008JD010825.
[5]  Zhang Xinping, Sun Zhi'an, Guan Huade, et al. GCM simulation of stable water isotopes in water cycle and intercomparisons over East Asia[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1274-1285. [章新平, 孙治安, 关华德, 等. 东亚水循环中水稳定同位素的GCM模拟和相互比较[J]. 冰川冻土, 2011, 33(6):1274-1285.]
[6]  Zhang Xinping, Guan Huade, Zhang Xinzhu, et al. Simulations of δ18O in precipitation using isotopic atmospheric water balance model[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1058-1068. [章新平, 关华德, 张新主, 等. 利用稳定同位素大气水平衡模式模拟降水中δ18O的分布[J]. 冰川冻土, 2014, 36(5):1058-1068.]
[7]  Majoube M. Fractionnement en oxygene-18 et en deuterium entre l'eau et sa vapeur[J]. The Journal of Chemical Physics, 1971, 68(7/8):1423-1436.
[8]  Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468.
[9]  Jouzel J. Isotopes in cloud physics:Multiphase and multistage condensation processes[J]. Handbook of Environmental Isotope Geochemistry, 1986, 2:61-112.
[10]  Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia[J]. Journal of Geophysical Research, 1998, 103(D22):28721-28742.
[11]  Zhang Xinping, Liu Jingmiao, Nakawo M, et al. Vapor origins recealed by deuterium excess in precipitation in southwest China[J]. Journal of Glaciology and Geocryology, 2009, 31(4):613-619. [章新平, 刘晶淼, 中尾正义, 等. 我国西南地区降水中过量氘指示水汽来源[J]. 冰川冻土, 2009, 31(4):613-619.]
[12]  Li Yaju, Zhang Mingjun, Wang Shengjie, et al. Progress of the research of stable isotope in precipitation in China:A review[J]. Journal of Glaciology and Geocryology, 2011, 33(3):624-633. [李亚举, 张明军, 王圣杰, 等. 我国大气降水中稳定同位素研究进展[J]. 冰川冻土, 2011, 33(3):624-633.]
[13]  Zhang Xinping, Yao Tandong, Liu Jingmiao, et al. Isotopic variations under different time scales[J]. Journal of Glaciology and Geocryology, 2003, 25(4):428-432. [章新平, 姚檀栋, 刘晶淼, 等. 不同时间尺度下的稳定同位素变化[J]. 冰川冻土, 2003, 25(4):428-432.]
[14]  Li Jingbao, Dai Yong, Yin Hui, et al. Agricultural drought in Dongting Lake Basin in recent 60 years:Evolution characteristics and trend prediction[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1391-1398. [李景保, 代勇, 尹辉, 等. 1950-2009年洞庭湖流域农业旱灾演变特征及趋势预测[J]. 冰川冻土, 2011, 33(6):1391-1398.]
[15]  Oki T, Musiake K, Matsuyama H, et al. Global atmospheric water balance and runoff from large river basins[J]. Hydrological Processes, 1995, 9(5/6):655-678.
[16]  Yoshimura K, Oki T, Ichiyanagi K. Evaluation of two-dimensional atmospheric water circulation fields in reanalyses by using precipitation isotopes databases[J]. Journal of Geophysical Research, 2004, 109(D20). doi:10.1029/2004JD004764.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133