全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2015 

新疆阿克苏河上游高寒草甸蒸散发观测与估算

DOI: 10.7522/j.issn.1000-0240.2015.0027, PP. 241-248

Keywords: 高寒草甸,蒸散发,最小二乘支持向量机(LS-SVM),阿克苏河上游

Full-Text   Cite this paper   Add to My Lib

Abstract:

蒸散发是水循环的关键环节,是水量平衡的重要组成部分.由于在高寒山区进行长期野外观测的难度较大,导致对区域实际蒸散发的认识不清,从而无法明确区域水资源分配与不同植被的生态水文功能.在天山山区,高寒草甸占其总面积近15%,其对降水的调节作用巨大,但目前高寒草甸的实际蒸散发量多用潜在蒸散发进行推算,缺少实际观测数据.2012年10月-2013年9月,利用3个小型蒸渗仪观测了阿克苏河上游科其喀尔冰川综合考察站附近山区的高寒草甸的实际蒸散量,并尝试利用最小二乘支持向量机(LS-SVM)估算实际蒸散发.结果表明研究区高寒草甸全年内实测蒸散量511.3mm,日均蒸散量为1.4mm·d-1;在不同时期,蒸散量变化剧烈,冻结期、生长前期、生长期和生长后期的蒸散量分别为53.9、41.0、363.8和52.6mm,分别占全年蒸散量的10.5%、8.0%、71.2%和10.3%.最小二乘支持向量机对实际蒸散发的估算精度较高,对观测资料相对缺乏的高寒山区来说,不失为一种较好的估算蒸散发方法.

References

[1]  Zhao Lingling, Xia Jun, Xu Chongyu, et al. A review of evapotranspiration estimation methods in hydrological models[J]. Acta Geographica Sinica, 2013, 68(1):127-136. [赵玲玲, 夏军, 许崇育, 等. 水文循环模拟中蒸散发估算方法综述[J]. 地理学报, 2013, 68(1):127-136.]
[2]  Sun Yue, Li Dongliang. Features and response to climate-driven factors of the runoff in the upper reaches of the Weihe River during 1975-2011[J]. Journal of Glaciology and Geocryology, 2014, 36(2):413-423. [孙悦, 李栋梁. 1975-2011年渭河上游径流演变规律及对气候驱动因子的响应[J]. 冰川冻土, 2014, 36(2):413-423.]
[3]  Song Lulu, Yin Yunhe, Wu Shaohong. Advancements of the metrics of evapotranspiration[J]. Progress in Geography, 2012, 31(9):1186-1195. [宋璐璐, 尹云鹤, 吴绍洪. 蒸散发测定方法研究进展[J]. 地理科学进展, 2012, 31(9):1186-1195.]
[4]  Xu Min, Ye Baisheng, Zhao Qiudong. Estimation of the real evaporation in the source region of the Yellow River using GRACE satellite data[J]. Journal of Glaciology and Geocryology, 2013, 35(1):138-147. [许民, 叶柏生, 赵求东. 基于GRACE重力卫星数据的黄河源区实际蒸发量估算[J]. 冰川冻土, 2013, 35(1):138-147.]
[5]  Allen R G, Pereira L, Howell T A, et al. Evapotranspiration information reporting:Ⅰ. Factors governing measurement accuracy[J]. Agricultural Water Management, 2011, 98(6):899-920.
[6]  Daamen C C, Simmonds L P, Wallace J S, et al. Use of microlysimeters to measure evaporation from sandy soils[J]. Agricultural and Forest Meteorology, 1993, 65(3):159-173.
[7]  Gao Xiaofei, Wang Xiaolan. Effects of micro-lysimeter diameters on soil evaporation measurement[J]. Journal of Irrigation and Drainage, 2011, 30(1):1-4.
[8]  Han Chuntan, Chen Rensheng, Liu Junfeng, et al. Hydrological characteristics in non-freezing period at the alpine desert zone of Hulugou watershed[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1536-1544. [韩春坛, 陈仁升, 刘俊峰, 等. 祁连山葫芦沟流域高山寒漠带非冻结期水文特征[J]. 冰川冻土, 2013, 35(6):1536-1544.]
[9]  Song Kechao, Kang Ersi, Jin Bowen, et al. Measurement of evapotranspiration by the microlysimeters in the mountain vegetation zone of the Hei River basin[J]. Journal of Glaciology and Geocryology, 2004, 26(5):617-623. [宋克超, 康尔泗, 金博文, 等. 两种小型蒸渗仪在黑河流域山区植被带的应用研究[J]. 冰川冻土, 2004, 26(5):617-623.]
[10]  Ross M, Geurink J, Said A, et al. Evapotranspiration conceptualization in the HSPF-MODFLOW integrated models[J]. Journal of the American Water Resources Association, 2005, 41(5):1013-1026.
[11]  Wu Jinkui, Chen Junwu, Wu Hao, et al. Comparative study of evapotranspiration in an alpine meadow in the upper reach of Shulehe River basin[J]. Scientia Geographica Sinica, 2013, 33(1):97-103. [吴锦奎, 陈军武, 吴灏, 等. 疏勒河上游高寒草甸蒸散对比研究[J]. 地理科学, 2013, 33(1):97-103.]
[12]  Hou Zhiqiang, Yang Peiling, Su Yanping, et al. Simulation of ET0 based on LS-SVM method[J]. Journal of Hydraulic Engineering, 2011, 42(6):743-749. [侯志强, 杨培岭, 苏艳平, 等. 基于最小二乘支持向量机的ET0模拟计算[J]. 水利学报, 2011, 42(6):743-749.]
[13]  Lin Jianyi, Cheng Chuntian. Application of support vector machine method to long-term runoff forecast[J]. Journal of Hydraulic Engineering, 2006, 37(6):681-686. [林剑艺, 程春田. 支持向量机在中长期径流预报中的应用[J]. 水利学报, 2006, 37(6):681-686.]
[14]  Xu Zhongmin, Lan Yongchao, Cheng Guodong. A study on runoff forecast by artificial neural model[J]. Journal of Glaciology and Geocryology, 2000, 22(4):372-375. [徐中民, 蓝永超, 程国栋. 人工神经网络方法在径流预报中的应用[J]. 冰川冻土, 2000, 22(4):372-375.]
[15]  Liong S Y, Sivapragasm C. Flood stage forecasting with SVM[J]. Journal of the American Water Resources Association, 2002, 38(1):173-186.
[16]  Kumar M, Raghuwanshi N S, Singh R. Artificial neural networks approach in evapotranspiration modeling:A review[J]. Irrigation Science, 2011, 29(1):11-25.
[17]  Gupta S, Kumar M, Bandyopadhyay A, et al. Modelling of evapotranspiration using artificial neural networks[J]. Hydrology Journal, 2011, 34(1/2):22-32.
[18]  Chen Dachun, Cao Wei, Lei Xiaoyun. Estimation on daily reference evapotranspiration based on least squares support vector machines[J]. Journal of Xinjiang Agricultural University, 2012, 34(5):431-436. [陈大春, 曹伟, 雷晓云. 基于最小二乘支持向量机的参考作物潜在蒸散量估计[J]. 新疆农业大学学报, 2012, 34(5):431-436.]
[19]  Gu Yanping, Zhao Wenjie, Wu Zhansong. Least squares support vector machine algorithm[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(7):1063-1066. [顾燕萍, 赵文杰, 吴占松. 最小二乘支持向量机的算法研究[J]. 清华大学学报(自然科学版), 2010, 50(7):1063-1066.]
[20]  Zhang Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):32-42. [张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1):32-42.]
[21]  Li Bo, Gu Chongshi, Li Zhilu, et al. Monitoring model for dam seepage based on partial least-squares regression and partial least square support vector machine[J]. Journal of Hydraulic Engineering, 2008, 39(12):1390-1394. [李波, 顾冲时, 李智录, 等. 基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型[J]. 水利学报, 2008, 39(12):1390-1394.]
[22]  Hao Zhenchun, Yang Rongrong, Chen Xinmei, et al. Tempospatial patterns of the potential evaporation in the Yangtze River catchment for the period 1960-2011[J]. Journal of Glaciology and Geocryology, 2013, 35(2):408-419. [郝振纯, 杨荣榕, 陈新美, 等. 1960-2011年长江流域潜在蒸发量的时空变化特征[J]. 冰川冻土, 2013, 35(2):408-419.]
[23]  Pu Zongchao, Zhang Shanqing, Wang Shenglan, et al. Study on the change of annual potential evapotranspiration in the Tianshan Mountainous in recent 36 years and its comparison with that in south and north Xinjiang[J]. Arid Zone Research, 2009, 26(3):424-432. [普宗朝, 张山清, 王胜兰, 等. 近36年天山山区潜在蒸散量变化特征及其与南、北疆的比较[J]. 干旱区研究, 2009, 26(3):424-432.]
[24]  Chen Rensheng, Kang Ersi, Ji Xibin, et al. Preliminary study of the hydrological processes in the alpine meadow and permafrost regions at the head waters of Heihe River[J]. Journal of Glaciology and Geocryology, 2007, 29(3):387-396. [陈仁升, 康尔泗, 吉喜斌, 等. 黑河源区高山草甸的冻土及水文过程初步研究[J]. 冰川冻土, 2007, 29(3):387-396.]
[25]  Liu Yanwei. Application of SVM methods to forecasting peak water level in Tidal River[D]. Hangzhou:Zhejiang University, 2010. [刘艳伟. 支持向量机方法在感潮河段洪峰水位预报中的应用[D]. 杭州:浙江大学, 2010.]
[26]  Amiro B. Estimating annual carbon dioxide eddy fluxes using open-path analysers for cold forest sites[J]. Agricultural and Forest Meteorology, 2010, 150(10):1366-1372.
[27]  Li Hongqin, Li Yingnian, Zhang Fawei, et al. Variations of production and water use efficiency of the vegetation in alpine meadow[J]. Journal of Glaciology and Geocryology, 2013, 35(2):475-482. [李红琴, 李英年, 张法伟, 等. 高寒草甸植被生产量年际变化及水分利用率状况[J]. 冰川冻土, 2013, 35(2):475-482.]
[28]  Zheng Han, Wang Qiufeng, Li Yingnian, et al. Characteristics of evapotranspiration in an alpine shrub meadow in Haibei, Qinghai of Northwest China[J]. Chinese Journal of Applied Ecology, 2013, 24(11):3221-3228. [郑涵, 王秋凤, 李英年, 等. 海北高寒灌丛草甸蒸散量特征[J]. 应用生态学报, 2013, 24(11):3221-3228.]
[29]  Lu Zhixiang, Yang Yonggang, Zou Songbing, et al. A study of the land use change and its hydrologic response in the upper reaches of the Fen River[J]. Journal of Glaciology and Geocryology, 2014, 36(1):192-199. [陆志翔, 杨永刚, 邹松兵, 等. 汾河上游土地利用变化及其水文响应研究[J]. 冰川冻土, 2014, 36(1):192-199.]
[30]  Zhang Y, Ohata T, Ersi K, et al. Observation and estimation of evaporation from the ground surface of the cryosphere in eastern Asia[J]. Hydrological Processes, 2003, 17(6):1135-1147.
[31]  Yang Yong, Chen Rensheng, Song Yaoxuan, et al. Measurement and estimation of grassland evapotranspiration in a mountainous region at the upper reach of Heihe River basin[J]. Chinese Journal of Applied Ecology, 2013, 24(4):1055-1062. [阳勇, 陈仁升, 宋耀选, 等. 黑河上游山区草地蒸散发观测与估算[J]. 应用生态学报, 2013, 24(4):1055-1062.]
[32]  Kisi O. Least squares support vector machine for modeling daily reference evapotranspiration[J]. Irrigation Science, 2013, 31(4):611-619.
[33]  Shao Nianhua, Huang Lingmei, Shen Bing, et al. Application of PSO-SVM model in evapotranspiration forecasting[J]. Journal of Heilongjiang Hydraulic Engineering, 2009, 36(2):8-10. [邵年华, 黄领梅, 沈冰, 等. PSO-SVM模型在蒸发预测中的应用[J]. 黑龙江水专学报, 2009, 36(2):8-10.]
[34]  Zhang Zhanyu, Wang Shengfeng, Duan Aiwang, et al. Least squares support vector machines model for predicting reference evapotranspiration based on weather forecasts[J]. Advances in Water Science, 2010, 21(1):63-68. [张展羽, 王声锋, 段爱旺, 等. 基于天气预报的参考作物腾发量LS-SVM预测模型[J]. 水科学进展, 2010, 21(1):63-68.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133