全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

基于重轨InSAR的积雪深度反演方法

DOI: 10.7522/j.issn.1000-0240.2014.0062, PP. 517-526

Keywords: 积雪,遥感,雪深,InSAR,干涉

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用合成孔径雷达(SyntheticApertureRadar,SAR)反演积雪深度是流域尺度积雪遥感监测的热点之一,SAR的干涉测量(InterferometicSAR,InSAR)扩展了其在积雪研究中的应用.微波能够穿透干雪,并在雪-空气界面发生折射,导致传播路径变化;根据InSAR原理,降雪前后的SAR像对会形成由于干雪覆盖导致的干涉相位差.基于此,提出了基于重轨InSAR技术的积雪深度反演方法首先,结合气象、水文、野外观测数据,判断积雪状态,以选择最佳干涉像对(无雪和干雪覆盖);然后,优化干涉处理过程,利用差分原理,获得由于干雪覆盖导致的相位差;最后,基于雪深与相位差的几何关系,反演积雪深度,并探讨反演结果精度的影响因素.以新疆玛纳斯河流域山前平原为研究区,利用EnvisatASAR数据,实现积雪深度的反演.结果表明2009年2月份研究区大部分地区雪深为20cm左右,与野外观测结果相符;与同时期HJ-1光学影像比较,所获得的积雪覆盖范围吻合.同时指出,失相干和输入参数(入射角、雪密度)误差是反演结果误差的主要来源.

References

[1]  Ren Jiawen. Updating assessment results of global cryospheric change from SPM of IPCC WGI Fifth Assessment Report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1065-1067. [任贾文. 全球冰冻圈现状和未来变化的最新评估: IPCC WGI AR5 SPM发布[J]. 冰川冻土, 2013, 35(5): 1065-1067.]
[2]  Che Tao, Li Xin. Retrieval of snow depth in China by passive microwave remote sensing data and its accuracy assessment[J]. Remote Sensing Technology and Application, 2004, 19(5): 301-306. [车涛, 李新. 利用被动微波遥感数据反演我国积雪深度及其精度评价[J]. 遥感技术与应用, 2004, 19(5): 301-306.]
[3]  Robinson D, Kunzi K, Kukla G, et al. Comparative utility of microwave and shortwave satellite data for all-weather charting of snow cover[J]. Nature, 1984, 312(5993): 434-435.
[4]  Lu Xinyu, Wang Xiuqin, Cui Caixia, et al. Snow depth retrieval based on AMSR-E data in northern Xinjiang region, China[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 40-47. [卢新玉, 王秀琴, 崔彩霞, 等. 基于AMSR-E的北疆地区积雪深度反演[J]. 冰川冻土, 2013, 35(1): 40-47.]
[5]  Dai L Y, Che T, Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127: 14-29.
[6]  Wang Zhilan, Wang Xiaoping, Li Yaohui. Analyses of snow co-ver based on passive microwave remote sensing data and observed data over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 783-792. [王芝兰, 王小平, 李耀辉. 青藏高原积雪被动微波遥感资料与台站观测资料的对比分析[J]. 冰川冻土, 2013, 35(4): 783-792.]
[7]  Storvold R, Malnes E, Larsen Y, et al. SAR remote sensing of snow parameters in Norwegian areas: Current status and future perspective[J]. Journal of Electromagnetic Waves and Applications, 2006, 20(13): 1751-1759.
[8]  Shi J C, Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR. I: Inferring snow density and subsurface properties[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2465-2474.
[9]  Wu T D, Chen K S, Shi J C, et al. A transition model for the reflection coefficient in surface scattering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 2040-2050.
[10]  Shi J C. Active microwave remote sensing systems and applications to snow monitoring[M]//Liang S. Advances in Land Remote Sensing: System, Modeling, Inversion and Application. New York: Springer, 2008: 19-50.
[11]  Guneriussen T, Hogda K A, Johnsen H, et al. InSAR for estimation of changes in snow water equivalent of dry snow[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2101-2108.
[12]  Engen G. Delta-K interferometric SAR technique for snow water equivalent (SWE) retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 57-61.
[13]  Deeb E J, Forster R R, Kane D L. Monitoring snowpack evolution using interferometric synthetic aperture radar on the North Slope of Alaska, USA[J]. International Journal of Remote Sensing, 2011, 32(14): 3985-4003.
[14]  Esmaeily-Gazkohani A, Granberg H B, Gwyn Q H J. Repeat-pass cross-track interferometric SAR to measure dry snow water equivalent and depth[J]. Canadian Journal of Remote Sensing, 2010, 36(S2): S316-S326.
[15]  Sun Shaobo, Che Tao. A review of research on snow cover monitored with synthetic aperture radar (SAR)[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 636-647. [孙少波, 车涛. 基于合成孔径雷达(SAR)的积雪监测研究进展[J]. 冰川冻土, 2013, 35(3): 636-647.]
[16]  Goldstein R M, Engelhardt H, Kamb B, et al. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream[J]. Science, 1993, 262(5139): 1525-1530.
[17]  Liao Mingsheng, Lin Hui. Synthetic Aperture Radar Interferometry: Principle and Signal Processing[M]. Beijing: Surveying and Mapping Press, 2003. [廖明生, 林珲. 雷达干涉测量: 原理与信号处理基础[M]. 北京: 测绘出版社, 2003.]
[18]  Rott H, Sturm K, Miller H. Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data[J]. Annals of Glaciology, 1993, 17: 337-343.
[19]  Liu Guoxiang. Monitoring of Ground Deformations with Radar Interferometry[M]. Beijing: Surveying and Mapping Press, 2006. [刘国祥. 利用雷达干涉技术监测区域地表形变[M]. 北京: 测绘出版社, 2006.]
[20]  Hoen E W, Zebker H A. Penetration depths inferred from interferometric volume decorrelation observed over the Greenland ice sheet[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2571-2583.
[21]  Matzler C. Microwave permittivity of dry snow[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 573-581.
[22]  Hu Ruji. Physical Geography of the Tianshan Mountains in China[M]. Beijing: China Environmental Science Press, 2004. [胡汝骥. 中国天山自然地理[M]. 北京: 中国环境科学出版社, 2004.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133