Jin Huijun, Yu Wenbing, Chen Youchang, et al. (Differential) frost heave and thaw settlement in the engineering design and construction of oil pipelines in permafrost regions: A review[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 454-464. [金会军, 喻文兵, 陈友昌, 等. 多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J]. 冰川冻土, 2005, 27(3): 454-464.]
[2]
Det Norske Veritas (DNV). Russia Pipeline Oil Spill Study[R]. Norway: Joint UNDP/World Bank Energy Sector Management Assistance Programme, 2003.
[3]
Yang Sizhong, Jin Huijun, Ji Yanjun, et al. Progress of the studies of migration of oil spilled in frozen ground regions and its clean up[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 501-507. [杨思忠, 金会军, 吉延峻, 等. 冻土区石油污染物迁移及清除研究进展[J]. 冰川冻土, 2008, 30(3): 501-507.]
[4]
Aislabie J, Saul D J, Foght J M. Bioremediation of hydrocarbon-contaminated polar soils[J]. Extremophiles, 2006, 10(3): 171-179.
[5]
Margesin R, Schinner F. Biodegradation and bioremediation of hydrocarbons in extreme environments[J]. Applied Microbiology and Biotechnology, 2001, 56(5/6): 650-663.
[6]
Li Jianhua, Zhang Yali, Lü Jie, et al. Thermophilic microorganisms diversity in the underground cold environment of scientific test well MK-1 in Mohe basin[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 726-731. [李建华, 张亚丽, 吕杰, 等. 漠河盆地科学钻探井MK-1地下冷环境中嗜热微生物的多样性分析[J]. 冰川冻土, 2012, 34(3): 726-731.]
[7]
Li Changming, Zhang Xinfang, Zhao Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 713-725. [李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3): 713-725.]
[8]
Nazina T, Shestakova N, Grigor'yan A, et al. Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (PR China)[J]. Microbiology, 2006, 75(1): 55-65.
[9]
Wang Jing, Xu Hongke, Guo Shaohui. Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene[J]. Petroleum Science, 2007, 4(3): 68-75.
[10]
Zhang Fan, She Yuehui, Ma Shasha, et al. Response of microbial community structure to microbial plugging in a mesothermic petroleum reservoir in China[J]. Applied Microbiology and Biotechnology, 2010, 88(6): 1413-1422.
[11]
Li Peijun, Sun Tieheng, Stagnitti F, et al. Field-scale bioremediation of soil contaminated with crude oil[J]. Environmental Engineering Science, 2002, 19(5): 277-289.
[12]
Huang L C, Ye S H, Zhang Y, et al. Microbial remediation and optimization of oil polluted wetlands at Dalian bay in China[J]. Biomedical and Environmental Sciences, 2007, 20(5): 414-419.
[13]
Yang Sizhong, Jin Huijun, Yu Shaopeng, et al. An investigation into the permafrost environment along the Chinese-Russian Oil Pipeline Route from Mohe to Daqing[J]. Journal of Glaciology and Geocryology, 2010, 32(2): 358-366. [杨思忠, 金会军, 于少鹏, 等. 中俄输油管道(漠河-大庆段)主要冻土环境问题探析[J]. 冰川冻土, 2010, 32(2): 358-366.]
[14]
Chang Xiaoli, Jin Huijun, He Ruixia, et al. Review of permafrost monitoring in the northern Da Hinggan Mountains, Northeast China[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 93-100. [常晓丽, 金会军, 何瑞霞, 等. 大兴安岭北部多年冻土监测进展[J]. 冰川冻土, 2013, 35(1): 93-100.]
[15]
Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of the glaciers to climate change in China: Current situation and evaluation[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1077-1087. [杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(5): 1077-1087.]
[16]
He Ruixia, Jin Huijun, Wang Shaoling, et al. Discussion about assessment method of permafrost environment along China-Russia crude oil pipeline[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1098-1105. [何瑞霞, 金会军, 王绍令, 等. 中俄原油管道沿线多年冻土环境评价方法探讨[J]. 冰川冻土, 2011, 33(5): 1098-1105.]
[17]
Hao Jiaqian, He Ruixia. Discussion of the permafrost environment and pipeline construction technique along the China-Russia Pipeline[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1224-1231. [郝加前, 何瑞霞. 中俄原油管道沿线多年冻土环境及管道施工技术探讨[J]. 冰川冻土, 2013, 35(5): 1224-1231.]
[18]
Kimura N. Metagenomics: access to unculturable microbes in the environment[J]. Microbes and Environments, 2006, 21(4): 201-215.
[19]
Adetutu E M, Smith R J, Weber J, et al. A polyphasic approach for assessing the suitability of bioremediation for the treatment of hydrocarbon-impacted soil[J]. Science of the Total Environment, 2013, 450/451: 51-58.
[20]
Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
[21]
R Core Team. R: A Language and Environment for Statistical Computing[M]. Vienna, Austria: R Foundation for Statistical Computing, 2009.
[22]
Wickham H. Ggplot2: Elegant Graphics for Data Analysis[M]. New York: Springer, 2009.
[23]
Greer C W, Whyte L G, Niederberger T D. Microbial communities in hydrocarbon-contaminated temperate, tropical, alpine and polar soils[M]//Timmis K N. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer, 2010: 2313-2328.
[24]
Margesin R. Alpine microorganisms: useful tools for low-temperature bioremediation[J]. Journal of Microbiology, 2007, 45(4): 281-285.
[25]
Atlas R M, Bartha R. Microbial Ecology: Fundamentals and Applications[M]. 4th ed. California: Benjamin/Cummins Science Publishing, 1998.
[26]
Yergeau E, Sanschagrin S, Beaumier D, et al. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils[J]. Plos One, 2012, 7(1). doi:10.1371/journal.pone.0030058.
[27]
Lors C, Damidot D, Ponge J F, et al. Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales[J]. Environmental Pollution, 2012, 165: 11-17.
[28]
Yu S L, Li S G, Tang Y Q, et al. Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China[J]. Journal of Environmental Sciences, 2011, 23(9): 1533-1543.
[29]
MacNaughton S J, Stephen J R, Venosa A D, et al. Microbial population changes during bioremediation of an experimental oil spill[J]. Applied and Environmental Microbiology, 1999, 65(8): 3566-3574.
[30]
Kertesz M A, Kawasaki A. Hydrocarbon-degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis[M]//Timmis K N. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer, 2010: 1693-1705.
[31]
Ebersp cher J, Lingens F. The genus Phenylobacterium[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 250-256.
[32]
Filler D M, Snape I, Barnes D L. Bioremediation of Petroleum Hydrocarbons in Cold Regions[M]. Cambridge, UK: Cambridge University Press, 2008.
[33]
Juhasz A L, Britz M L, Stanley G A. Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepacia[J]. Journal of Applied Microbiology, 1997, 83(2): 189-198.
[34]
Stürmeyer H, Overmann J, Babenzien H D, et al. Ecophysiological and phylogenetic studies of Nevskia ramosa in pure culture[J]. Applied and Environmental Microbiology, 1998, 64(5): 1890-1894.
[35]
Viggor S, Juhanson J, J esaar M, et al. Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel[J]. Microbiological Research, 2013, 168(7): 415-427.
[36]
Hao Chunbo, Wang Guangcai, Dong Jiannan, et al. Bacterial molecular ecology in the groundwater contaminated by oil[J]. Earth Science Frontiers, 2009, 16(4): 389-400 [郝春博, 王广才, 董建楠, 等. 石油污染地下水中细菌分子生态学研究[J]. 地学前缘, 2009, 16(4): 389-400.]
[37]
Hamamura N, Olson S H, Ward D M, et al. Microbial population dynamics associated with crude oil biodegradation in diverse soils[J]. Applied and Environmental Microbiology, 2006, 72(9): 6316-6324.
[38]
Cypionka H, Babenzien H D, Glckner F O, et al. The genus Nevskia[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 1152-1155.
[39]
Eiroa M N U, Junqueira V C A, Schmidt F L. Alicyclobacillus in orange juice: occurrence and heat resistance of spores[J]. Journal of Food Protection, 1999, 62: 883-886.
[40]
Kannenberg E L, Poralla K. Hopanoid biosynthesis and function in bacteria[J]. Naturwissenschaften, 1999, 86(4): 168-176.
[41]
Rodrigues D C, de Vasconcellos S P, Alves P B, et al. Relationship between cyclohexyl-alkanoic acids and the acidothermophilic bacterium Alicyclobacillus. spp.: evidence from Brazilian oils[J]. Organic Geochemistry, 2005, 36(10): 1443-1453.
[42]
Oliveira V M D, Sette L D, Simioni K C M, et al. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs[J]. Brazilian Journal of Microbiology, 2008, 39(3): 445-452.
[43]
Samanta S K, Singh O V, Jain R K. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation[J]. Trends in Biotechnology, 2002, 20(6): 243-248.
[44]
Antai S P. Biodegradation of Bonny light crude oil by Bacillus sp and Pseudomonas sp[J]. Waste Management, 1990, 10(1): 61-64.
[45]
Omotayo A E, Ojo O Y, Amund O O. Crude oil degradation by microorganisms in soil composts[J]. Research Journal of Microbiology, 2012, 7(4): 209-218.