全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

喜马拉雅山珠穆朗玛峰北坡绒布冰川度日因子研究

DOI: 10.7522/j.issn.1000-0240.2014.0132, PP. 1101-1110

Keywords: 喜马拉雅山,珠穆朗玛峰,度日因子,冰川消融

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据喜马拉雅山珠穆朗玛峰绒布冰川消融资料和同期气温数据,分析了该冰川度日因子时空变化.研究结果显示绒布冰川度日因子随海拔升高而增加,海拔5260m、5350m、5450m、5500m和5750m处冰川度日因子平均值分别为3.27mm·℃-1·d-1、8.21mm·℃-1·d-1、23.19mm·℃-1·d-1、46.41mm·℃-1·d-1和42.05mm·℃-1·d-1;不同厚度表碛下的冰川度日因子有所差异;但对同一观测点来说,度日因子随时间变化较小;在喜马拉雅山南北坡海拔-1·d-1);而在南北坡海拔>5350m的地区,度日因子普遍较大(大部分>15.8mm·℃-1·d-1),相比南坡,喜马拉雅山北坡冰川度日因子更大.

References

[1]  Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[2]  Bookhagen B, Burbank D W. Toward a complete Himalayan hy-drological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F3). doi:10.1029/2009JF001426.
[3]  Ren Jiawen, Qin Dahe, Jing Zhefan. Climatic warming causes the glacier retreat in Mt. Qomolangma[J]. Journal of Glaciology and Geocryology, 1998, 20(2): 57-58. [任贾文, 秦大河, 井哲帆. 气候变暖使珠穆朗玛峰地区冰川处于退缩状态[J]. 冰川冻土, 1998, 20(2): 57-58.]
[4]  Ren Jiawen, Qin Dahe, Kang Shichang, et al. Glacier variations and climate warming and drying in the Central Himalayas[J]. Chinese Science Bulletin, 2004, 49(1): 65-69. [任贾文, 秦大河, 康世昌, 等. 喜马拉雅山中段冰川变化及气候暖干化特征[J]. 科学通报, 2003, 48(23): 2478-2482.]
[5]  Yang Xiuhai, Zhuoga, Luobu, et al. Characteristics of weather and climate change around Mt. Qomolangma[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 336-347. [杨秀海, 卓嘎, 罗布, 等. 珠峰地区天气气候特征分析[J]. 冰川冻土, 2012, 34(2): 336-347.]
[6]  Du Jun, Jianjun, Hong Jianchang, et al. Response of seasonal frozen soil to climate change on Tibet region from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 512-521. [杜军, 建军, 洪建昌, 等. 1961-2010年西藏季节性冻土对气候变化的响应[J]. 冰川冻土, 2012, 34(3): 512-521.]
[7]  Zhuoga, Luobu, Zhou Changyan. Climate characteristics of water vapor transport over Tibet region in 1980-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 783-794. [卓嘎, 罗布, 周长艳. 1980-2009年西藏地区水汽输送的气候特征[J]. 冰川冻土, 2012, 34(4): 783-794.]
[8]  Zhang Dongqi, Xiao Cunde, Qin Dahe. Himalayan glaciers fluctuation over the last decades and its impact on water resources[J]. Journal of Glaciology and Geocryology, 2009, 31(5): 885-895. [张东启, 效存德, 秦大河. 近几十年来喜马拉雅山冰川变化及其对水资源的影响[J]. 冰川冻土, 2009, 31(5): 885-895.]
[9]  Ma Linglong, Tian Lide, Pu Jianchen, et al. Recent area and ice change of Kangwue Glacier in the middle of Himalayas[J]. Chinese Science Bulletin, 2010, 55(20): 2088-2096. [马凌龙, 田立德, 蒲健辰, 等. 喜马拉雅山中段抗物热冰川的面积和冰储量变化[J]. 科学通报, 2010, 55(18): 1766-1774.]
[10]  Zhang Tong, Xiao Cunde, Qin Xiang, et al. Ice thickness observation and landform study of East Rongbuk Glacier, Mt. Qomolangma[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1059-1066. [张通, 效存德, 秦翔, 等. 珠穆朗玛峰东绒布冰川厚度测量与地形特征分析[J]. 冰川冻土, 2012, 34(5): 1059-1066.]
[11]  Pubu Ciren, Chuduo, Zhuoga, et al. Temporal and spatial distribution of snow cover in the Qomolangma Natural Reserve of the Himalayas during 2001-2010[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1103-1111. [普布次仁, 除多, 卓嘎, 等. 2001-2010年喜马拉雅山珠穆朗玛峰自然保护区积雪面积的时空分布特征[J]. 冰川冻土, 2013, 35(5): 1103-1111.]
[12]  Zhang Yong, Liu Shiyin, Shangguan Donghui, et al. Positive degree-day factor for Keqicar Baqi Glacier, south of Tianshan[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 337-343. [张勇, 刘时银, 上官冬辉, 等. 天山南坡科其卡尔巴契冰川度日因子变化特征研究[J]. 冰川冻土, 2005, 27(3): 337-343.]
[13]  Hock R. Temperature index melt modeling in mountain areas[J]. Journal of Hydrology, 2003, 282(1): 104-115.
[14]  Liu Weigang, Zhang Dongqi, Liu Jingfeng, et al. A study on temperature lapse rate on the northern and southern slopes of the Central Himalayas[J]. Journal of Arid Meteorology, 2013, 31(2): 240-245. [刘伟刚, 张东启, 柳景峰, 等. 喜马拉雅山中段地区气温直减率变化特征[J]. 干旱气象, 2013, 31(2): 240-245.]
[15]  Martinec J, Rango A. Parameter values for snowmelt runoff modelling[J]. Journal of Hydrology, 1986, 84(3): 197-219.
[16]  Singh P, Jain S K. Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields[J]. Hydrological Sciences Journal, 2003, 48(2): 257-276.
[17]  Quick M C, Pipes A. UBC watershed model[J]. Hydrological Sciences Bulletin, 1977, 22(1): 153-161.
[18]  Bergstr m S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments, Report No. RHO 7[R]. Norrkping, Sweden: Swedish Meteorological and Hydrological Institute, 1976.
[19]  Liu Weigang, Xiao Cunde, Liu Jingshi, et al. Ablation rates of a debris-covered glacier, Rongbuk Glacier around Mt. Qomolangma, Central Himalayas, China[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 814-823. [刘伟刚, 效存德, 刘景时, 等. 喜马拉雅山珠峰北坡绒布冰川消融速率特征分析[J]. 冰川冻土, 2013, 35(4): 814-823.]
[20]  Pratap S, Kumar N. Determination of snowmelt factor in the Himalayan region[J]. Hydrological Sciences Journal, 1996, 41(3): 301-310.
[21]  Kayastha R B, Ageta Y, Nakawo M. Positive degree-day factors for ablation on glaciers in the Nepalese Himalayas: case study on glacier AX010 in Shorong Himalayas, Nepal[J]. Bulletin of Glaciological Research, 2000, 17: 1-10.
[22]  Kayastha R B, Takeuchi Y, Nakawo M, et al. Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor[M]//IAHS Publication No. 264. Wallingford, UK: IAHS, 2000: 71-81.
[23]  Mattson L E, Gardner J S, Yong G J. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya[M]//IAHS Publication No. 218. Wallingford, UK: IAHS, 1993: 289-296.
[24]  Sakai A, Nakawo M, Fujita K. Melt rate of ice cliff on the Lirung Glacier, Nepal Himalayas, 1996[J]. Bulletin of Glacier Research, 1998, 16: 57-66.
[25]  VKayastha R B, Ageta Y, Nakawo M, et al. Positive degree-day factors for ice ablation on four glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau[J]. Bulletin of Glaciological Research, 2003, 20: 7-14.
[26]  Liu Shiyin, Ding Yongjian, Wang Ninglian, et al. Mass balance Kangwure (flat-top) Glacier on the north side of Mt. Xixiabangma, China[J]. Bulletin of Glacier Research, 1996, 14: 37-43.
[27]  Scientific Expedition Team of China Mountaineering in Mt. Qomolangma. Report of Scientific Expedition in Mt. Qomolangma: Modern Glacier and Geomorphology (1966-1968)[M]. Beijing: Science Press, 1975: 65-70. [中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告: 现代冰川与地貌(1966-1968)[M]. 北京: 科学出版社, 1975: 65-70.]
[28]  Liu Weigang, Ren Jiawen, Qin Xiang, et al. A study of hydrological process around Rongbuk Glacier, Mt. Qomolangma[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 663-667. [刘伟刚, 任贾文, 秦翔, 等. 珠穆朗玛峰绒布冰川水文过程初步研究[J]. 冰川冻土, 2006, 28(5): 663-667.]
[29]  Liu Weigang, Ren Jiawen, Qin Xiang, et al. Hydrological characteristics of the runoff yield and runoff confluence in the Rongbuk Glacier catchment in Mt. Qomolangma, Central Himalayas, China[J]. Journal of Glaciology and Geocryology, 2010, 32(2): 367-372. [刘伟刚, 任贾文, 秦翔, 等. 珠穆朗玛峰绒布冰川消融与产汇流特征分析[J]. 冰川冻土, 2010, 32(2): 367-372.]
[30]  Liu Weigang, Ren Jiawen, Liu Jingshi, et al. Runoff simulation of the Rongbuk Glacier watershed around the Mt. Qomolangma, Central Himalaya, Using HYCYMODEL[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1449-1459. [刘伟刚, 任贾文, 刘景时, 等. 喜马拉雅山中段珠峰绒布冰川流域径流模拟研究[J]. 冰川冻土, 2012, 34(6): 1449-1459.]
[31]  Zhang Tong, Xiao Cunde. Study of the modeling of seracs landform based on fractal theory[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 49-55. [张通, 效存德. 基于分形的冰塔林形态模拟初探[J]. 冰川冻土, 2012, 34(1): 49-55.]
[32]  Ye Qinghua, Zhong Zhenwei, Kang Shichang, et al. Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China[J]. Journal of Mountain Science, 2009, 6(3): 211-220.
[33]  Finsterwalder S, Schunk H. Der Suldenferner[J]. Zeitschrift des Deutschen und Oesterreichischen Alpenvereins, 1887, 18: 72-89.
[34]  Braithwaite R J, Zhang Y. Sensitivity of mass balance of five glaciers to temperature changes assessed by tuning a degree day model[J]. Journal of Glaciology, 2000, 46(152): 7-14.
[35]  Liu Shiyin, Ding Yongjian, Ye Baisheng, et al. Study on the mass balance of the Glacier No.1 at the headwaters of ther mqi River using degree day method[C]//Proceedings of the 5th Chinese Conference on Glaciology and Geocryology: Volume 1. Lanzhou: Gansu Culture Press, 1996: 197-204. [刘时银, 丁永建, 叶柏生, 等. 度日因子用于乌鲁木齐河源1号冰川物质平衡计算的研究[C]//第五届全国冰川冻土学大会论文集: 上册. 兰州: 甘肃文化出版社, 1996: 197-204.]
[36]  Qiao Chengjun, He Xiaobo, Ye Baisheng. Study of the degree-day factors for snow and ice on the Dongkemadi Glacier, Tanggula Range[J]. Journal of Glaciology and Geocryology, 2010, 32(5): 257-264. [谯程骏, 何晓波, 叶柏生. 唐古拉山冬克玛底冰川雪冰度日因子研究[J]. 冰川冻土, 2010, 32(5): 257-264.]
[37]  Wu Qianru, Kang Shichang, Gao Tanguang, et al. The characteristics of the positive degree-day factors of the Zhadang Glacier of the Nyainqêntanglha Range of Tibetan Plateau, and its application[J]. Journal of Glaciology and Geocryology, 2010, 32(5): 891-897. [吴倩如, 康世昌, 高坛光, 等. 青藏高原纳木错流域扎当冰川度日因子特征及其应用[J]. 冰川冻土, 2010, 32(5): 891-897.]
[38]  Ohmura A. Physical basis for the temperature-based melt index method[J]. Journal of Applied Meteorolgy, 2001, 40(4): 753-761.
[39]  Ambach W. Interpretation of the positive-degree-days factor by heat balance characteristics: West Greenland[J]. Nordic Hydrology, 1988, 19: 217-224.
[40]  Lang H, Braun L. On the information content of air temperature in the context of snow melt estimation[M]//IAHS Publication No. 190. Wallingford, UK: IAHS, 1990: 347-354.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133