全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

利用稳定同位素大气水平衡模式模拟降水中δ18O的分布

DOI: 10.7522/j.issn.1000-0240.2014.0128, PP. 1058-1068

Keywords: 稳定同位素,大气,水平衡,模拟,分馏

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用稳定同位素大气水平衡模式,模拟了2012年全球大气水汽和降水中δ18O的空间分布和时间变化以及降水中δ18O与降水量、温度之间的关系.其目的在于检验稳定同位素大气水平衡模式模拟水稳定同位素循环的能力,揭示稳定同位素效应产生的主要原因,改善对水循环中稳定同位素效应的理解和认识.模拟结果很好地再现了全球降水中δ18O的纬度效应、大陆效应和季节差异.在水循环过程中,引起降水中稳定同位素空间变化和时间变化的原因与蒸发对水汽同位素的富集作用、降水对水汽同位素的贫化作用、凝结温度对水汽同位素贫化程度的影响有关.模拟的降水量效应主要出现在中低纬度海洋和季风区,这种分布形势与δ18O季节差和降水量季节差的分布相对应;模拟的温度效应主要出现在中高纬度陆地,这种分布形势与降水中δ18O季节差的分布形势相对应.在一些低纬度地区,伴随强降水量效应的出现,温度效应也同时出现.

References

[1]  Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[2]  Jouzel J. Isotopes in cloud physics: multiphase and multistage condensation processes[C]//Handbook of Environmental Isotope Geochemistry: Vol. 2. Amsterdam, the Netherlands: Elsevier Science, 1986: 61-112.
[3]  Li Yaju, Zhang Mingjun, Wang Shengjie, et al. Progress of the research of stable isotope in precipitation in China: A review[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 624-633. [李亚举, 张明军, 王圣杰, 等. 我国大气降水中稳定同位素研究进展[J]. 冰川冻土, 2011, 33(3): 624-633.]
[4]  Zhang Xinping, Yao Tandong, Liu Jingmiao, et al. Isotopic variations under different time scales[J]. Journal of Glaciology and Geocryology, 2003, 25(4): 428-432. [章新平, 姚檀栋, 刘晶淼, 等. 不同时间尺度下的稳定同位素变化[J]. 冰川冻土, 2003, 25(4): 428-432.]
[5]  Deji, Yao Tandong, Yao Ping, et al. Characteristics of climate change in warm and cold periods revealed from ice cores and meteorological records during the past 100 years on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1382-1390. [德吉, 姚檀栋, 姚平, 等. 冰芯和气象记录揭示的青藏高原百年来典型冷暖时段气候变化特征[J]. 冰川冻土, 2013, 35(6): 1382-1390.]
[6]  Zhang Xinping, Sun Zhi'an, Guan Huade, et al. GCM simulation of stable water isotopes in the water cycle and intercomparisons over East Asia[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1274-1285. [章新平, 孙治安, 关华德, 等. 东亚水循环中稳定同位素的GCM模拟和比较[J]. 冰川冻土, 2011, 33(6): 1274-1285.]
[7]  Zhang Xinping, Liu Jingmiao, Nakawo M, et al. Deuterium excess in precipitation indicating vapor source in Southwest China[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 613-619. [章新平, 刘晶淼, 中尾正义, 等. 我国西南地区降水中过量氘指示水汽来源[J]. 冰川冻土, 2009, 31(4): 613-619.]
[8]  Jouzel J, Russell G L, Suozzo R J. Simulations of the HDO and H2 18O atmospheric cycles using the NASA-GISS general circulation model-the seasonal cycle for present day conditions[J]. Journal of Geophysical Research, 1987, 92: 14739-14760.
[9]  Joussaume S, Sadourny R, Jouzel J. A general circulation model of water isotope cycles in the atmosphere[J]. Nature, 1984, 311: 24-29.
[10]  Jouzel J, Koster R D, Suozzo R J, et al. Simulations of the HDO and H2 18O atmospheric cycles using the NASA GISS GCM: sensitivity experiments for present-day conditions[J]. Journal of Geophysical Research, 1991, 94: 7495-7507.
[11]  Hoffmann G, Werner M, Heimann M. Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years[J]. Journal of Geophysical Research, 1998, 103: 16871-16896.
[12]  Noone D C, Simmonds I. Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979-95[J]. Journal of Climate, 2002, 15: 3150-3169.
[13]  Zhang Xinping, Sun Zhi'an, Guan Huade, et al. GCM simulation of stable isotopes in the water cycle and comparison with GNIP observation over the East Asia[J]. Acta Meteorologica Sinica, 2012, 26(4): 420-437.
[14]  Oki T, Musiake K, Matsuyama H, et al. Global atmospheric water balance and runoff from large river basins[J]. Hydrological Processes, 1995, 9: 655-678.
[15]  Yoshimura K, Oki T, Ichiyanagi K. Evaluation of two-dimensional atmospheric water circulation fields in reanalyses by using precipitation isotopes databases[J]. Journal of Geophysical Research, 2004, 109. doi:10.1029/2004JD004764.
[16]  Zhang Xinping, Yao Tandong, Liu Jingmiao, et al. Simulations of stable isotopic fractionation in mixed cloud in middle latitudes: Taking the precipitation at ürümqi as an example[J]. Advances in Atmospheric Sciences, 2003, 20(2): 261-268.
[17]  Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia[J]. Journal of Geophysical Research, 1998, 103: 28721-28742.
[18]  Zhang Xinping, Zhang Xinzhu, Guan Huade, et al. Spatiotemporal distributions of δD in atmospheric water vapor based on TES data during 2004-2009[J]. Acta Meteorologica Sinica, 2012, 26(6): 683-699.
[19]  Pang Hongxi, He Yuanqing, Zhang Zhonglin, et al. Origin of summer monsoon rainfall identified by δ18O in precipitation[J]. Chinese Science Bulletin, 2005, 50(23): 2761-2764.
[20]  Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2010, 55(2): 200-211.
[21]  Yoshimura K, Oki T, Ohte N, et al. A quantitative analysis of short-term 18O variability with a Rayleigh-type isotope circulation model[J]. Journal of Geophysical Research, 2003, 108. doi:10.1029/2003JD003477.
[22]  Majoube M. Fractionnement en oxygene 18 et en deuterium entre l'eau et savapeur[J]. The Journal of Chemical Physics, 1971, 10: 1423-1436.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133