全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

额尔齐斯河源区森林对春季融雪过程的影响评估

DOI: 10.7522/j.issn.1000-0240.2014.0151, PP. 1260-1270

Keywords: 阿尔泰山,卡依尔特斯河流域,季节性积雪,森林,积雪消融,度日因子算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

春季积雪融水是额尔齐斯河河源区最重要的水资源.为探索森林对春季融雪过程的影响,于2014年融雪期在额尔齐斯河河源区的卡依尔特斯河流域,选择草地、林中空地和林下三种不同地貌条件,分别观测积雪消融过程.结果显示积雪消融过程中,积雪深度和雪水当量的变化并不是同步的;积雪深度的减小是持续发生的,是新雪密实化作用的结果;而雪水当量仅在日均空气温度高于0℃时才出现快速的下降.森林具有显著调节空气温度的功能,三种类型观测点1.5m处的日平均空气温度表现为草地>林下>林中空地,其中,消融期内草地的平均空气温度(-2.5℃)远高于林下(-5.4℃)和林中空地(-6.1℃);森林的存在显著减小了空气温度的日较差.草地、林中空地和林下积雪消融持续期分别为20d、43d和35d,消融期平均积雪消融速率分别为2.1mm·d-1、1.5mm·d-1和1.2mm·d-1,即草地>林中空地>林下.另外,单棵树对积雪的消融速率有极其重要的影响树冠外一定距离内积雪的消融速率约为树冠下积雪消融速率的2倍以上;但由于树冠超过70%的降雪截留效应,树冠正下方的积雪消融结束时间仍提前树冠外侧约10d.积雪的消融由空气温度和辐射强度共同决定当日平均空气温度0℃时,单独的空气温度可直接反映消融速率的变化.研究还发现,该流域内积雪的消融主要发生在每天的1400-1900,该时段内积雪消融量约占全天消融总量的50%以上,这对流域内积雪洪水预报和水资源利用及管理具有重要的指导意义.

References

[1]  Brown R D, Robinson D A. Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty[J]. The Cryosphere, 2011, 5: 219-229.
[2]  Pan Y, Birdsey R A, Phillips O A, et al. The structure, distribution, and biomass of the world's forests[J]. Annual Review of Ecology, Evolution, and Systematics, 2013, 44(1): 593-622.
[3]  Robinson D A, Frei A. Seasonal variability of Northern Hemisphere snow extent using visible satellite data[J]. Professional Geographer, 2000, 52(2): 307-315.
[4]  Jost G, Weiler M, Gluns D R, et al. The influence of forest and topography on snow accumulation and melt at the watershed-scale[J]. Journal of Hydrology, 2007, 347(1/2): 101-115.
[5]  Zhou Jian, Zhang Wei, Pomeroy J W, et al. Simulating the cold regions hydrological processes in Northwest China with modular modeling method[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 389-400. [周剑, 张伟, Pomeroy J W, 等. 基于模块化建模方法的寒区水文过程模拟: 在中国西北寒区的应用[J]. 冰川冻土, 2013, 35(2): 389-400.]
[6]  Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glacier and snow cover to climatic change in Xinjiang (I): Hydrological effects[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 513-527. [沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(I): 水文效应[J]. 冰川冻土, 2013, 35(3): 513-527.]
[7]  Hedstrom N R, Pomeroy J W. Measurements and modelling of snow interception in the boreal forest[J]. Hydrological Processes, 1998, 12(10/11): 1611-1625.
[8]  Storck P, Lettenmaier D P, Bolton S M. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States[J]. Water Resources Research, 2002, 38(11). doi:10.1029/2002WR001281.
[9]  Wang Jiping, Wei Nuping, Ding Yi, et al. Effects of forest vegetation on snow distribution and ablation: An overview[J]. Journal of Natural Resource, 2013, 28(10): 1808-1816. [王计平, 魏奴平, 丁易, 等. 森林植被对积雪分配及其消融影响研究综述[J]. 自然资源学报, 2013, 28(10): 1808-1816.]
[10]  Pomeroy J W, Rowlands A, Hardy J, et al. Spatial variability of shortwave irradiance for snowmelt in forests[J]. Journal of Hydrometeorology, 2008, 9(6): 1482-1490.
[11]  Li Hongyi, Wang Jian. Key research topics and their advances on modeling snow hydrological processes[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 430-437. [李弘毅, 王建. 积雪水文模拟中的关键问题及其研究进展[J]. 冰川冻土, 2013, 35(2): 430-437.]
[12]  Andreadis K M, Storck P, Lettenmaier D P. Modeling snow accumulation and ablation processes in forested environments[J]. Water Resources Research, 2009, 45(5). doi:10.1029/2008WR007042.
[13]  Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological model, a platform for basing process representation and model structure on physical evidence[J]. Hydrological Processes, 2007, 21(19): 2650-2667.
[14]  Liu Hailiang, Cai Tijiu, Man Xiuling, et al. Effects of major forest types of Xiaoxing'an Mountains on the process of snowfall, snow cover and snow melting[J]. Journal of Beijing Forestry University, 2012, 34(2): 20-25. [刘海亮, 蔡体久, 满秀玲, 等. 小兴安岭主要森林类型对降雪、积雪和融雪过程的影响[J]. 北京林业大学学报, 2012, 34(2): 20-25.]
[15]  Suzuki K, Kubota J, Zhang Yinsheng, et al. Snow ablation in an open field and larch forest of the southern mountainous region of eastern Siberia[J]. Hydrological Sciences Journal, 2006, 51(3): 465-480.
[16]  Essery R, Bunting P, Hardy J, et al. Radiative transfer modeling of a coniferous canopy characterized by airborne remote sensing[J]. Journal of Hydrometeorology, 2008, 9(2): 228-241.
[17]  Boon S. Snow accumulation and ablation in a beetle-killed pine stand in Northern Interior British Columbia[J]. BC Journal of Ecosystems and Management, 2007, 8(3): 1-13.
[18]  Teti P. Effects of Overstory Mortality on Snow Accumulation and Ablation, Mountain Pine Beetle Working Paper 2008-13[R]. Williams Lake, BC, Canada: B.C. Ministry of Forests and Range, 2008.
[19]  Varhola A, Coops N C, Weiler M, et al. Forest canopy effects on snow accumulation and ablation: an integrative review of empirical results[J]. Journal of Hydrology, 2010, 392(3/4): 219-233.
[20]  Schneiderman E M, Matonse A H, Zion M S, et al. Comparison of approaches for snowpack estimation in New York City watersheds[J]. Hydrological Processes, 2013, 27(21): 3050-3060.
[21]  He Bin, Wang Guoya, Su Hongchao, et al. Response of extreme hydrological events to climate change in the regions of Altay Mountains, Xinjiang[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 927-933. [贺斌, 王国亚, 苏红超, 等. 新疆阿尔泰山地区极端水文事件对气候变化的响应[J]. 冰川冻土, 2012, 34(4): 927-933.]
[22]  Lou Mengyun, Liu Zhihong, Lou Shaoming, et al. Temporal and spatial distribution of snow cover in Xinjiang from 2002 to 2011[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1095-1102. [娄梦筠, 刘志红, 娄少明, 等. 2002-2011年新疆积雪时空分布特征研究[J]. 冰川冻土, 2013, 35(5): 1095-1102.]
[23]  Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (Ⅱ): Hazards effects[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1355-1370. [沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(Ⅱ): 灾害效应[J]. 冰川冻土, 2013, 35(6): 1355-1370.]
[24]  Zhang Wei, Shen Yongping, Wang Ninglian, et al. Changes and responses of seasonal frozen soil to climatic change from 1961 to 2011 in the Altay region of Xinjiang, China[J]. Cold Regions Science and Technology. (under review)
[25]  Zhang Wei, Shen Yongping, He Jianqiao, et al. Observation and analysis on snow properties on different underlying surfaces during snow-melting period in Altai Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 491-499. [张伟, 沈永平, 贺建桥, 等. 阿尔泰山融雪期不同下垫面上积雪特性观测与分析研究[J]. 冰川冻土, 2014, 36(3): 491-499.]
[26]  Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1/2/3/4): 104-115.
[27]  Hale R C, Gallo K P, Owen T K, et al. Land use/land cover change effects on temperature trends at U.S. Climate Normals stations[J]. Geophysical Research Letters, 2006, 33(11). doi:10.1029/2006GL026358.
[28]  Lu Yinhao, Ye Baisheng, Li Chong. Changes of runoff of the Hailar River basin in the southern margin of permafrost zone, Northeast China during 1958-2008[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 394-402. [陆胤昊, 叶柏生, 李翀. 近50 a来我国东北多年冻土区南缘海拉尔河流域径流变化特征分析[J]. 冰川冻土, 2014, 36(2): 394-402.]
[29]  Khadka D, Babel M S, Shrestha S, et al. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region[J]. Journal of Hydrology, 2014, 511: 49-60.
[30]  Jeelani G, Feddema J J, van der Veen C J, et al. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate[J]. Water Resources Research, 2012, 48. doi:10.1029/2011WR011590.
[31]  Veatch W, Brooks P D, Gustafson J R, et al. Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid-latitude site[J]. Ecohydrology, 2009, 2(2): 115-128.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133