Zheng Wuanjun. Tree Index of China[M]. Beijing: China Forest Publishing House, 1983: 1-361.
[2]
Zhou Yiliang, Li Shiyou. Forestry in China[M]. Beijing: Science Press, 2000.
[3]
Zhang Tao, An Lizhe, Cheng Tuo, et al. Antioxidative system in leaves of Picea crassifolia and Sabina przewalskii along an altitudinal gradient[J]. Acta Phytoecologica Sinica, 2009, 33: 802-811. [张涛, 安黎哲, 陈拓, 等. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报, 2009, 33: 802-811.]
[4]
Chen Xiaoli, Zhang Peng, Zhang Tao, et al. Study on antioxidase activities of Picea crassifolia and Sabina przewalskii at different altitude gradients[J]. Journal of Gansu Agricultural University, 2009, 44: 118-122. [陈晓丽, 张鹏, 张涛, 等. 不同海拔青海云杉与祁连圆柏叶片抗氧化酶活性的研究[J]. 甘肃农业大学学报, 2009, 44 : 118-122.]
[5]
Zhao Changming, Chen Litong, Ma Fei, et al. Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees(Picea crassifolia)[J]. Tree Physiology, 2008, 28: 133-141.
[6]
Chen Tuo, Qin Dahe, He Yuanqing, et al. The pattern of stable carbon isotope ratios in Sabina przewalskii[J]. Journal of Glaciology and Geocryology, 2002, 24: 571-573. [陈拓, 秦大河, 何元庆, 等. 祁连圆柏中稳定同位素分布特征[J]. 冰川冻土, 2002, 24: 571-573.]
[7]
Yun Hanbai, Chen Tuo, Liu Xiaohong, et al. Relationship between foliar stable carbon isotope composition and physiological factors in Picea crassifolia in Qinlian Mountains [J]. Journal of Glaciology and Geocryology, 2010, 32: 151-156. [ 贠汉伯, 陈 拓, 刘晓宏, 等. 祁连山青海云杉叶片δ13C特征及其与生理指标关系 [J]. 冰川冻土, 2010, 32 : 151-156.]
[8]
Wen Longying, Chen Tuo, Zhang Manxiao, et al. Variations of pigments and stable-carbon isotope ratios in Sabina przewalskii under different environments[J]. Journal of Glaciology and Geocryology, 2010, 32: 823-828. [文陇英, 陈拓, 张满效, 等. 不同生境下祁连圆柏叶片色素和稳定碳同位素组成的变化[J]. 冰川冻土, 2010, 32: 823-828.]
[9]
Tang Hongguan, Chen Tuo, Wen Longying, et al. Seasonal variation of foliar δ13 C~ value and its indictor significance in Sabina przewalskii and Sabina chinensis[J]. Journal of Glaciology and Geocryology, 2010, 32: 1030-1034. [汤红官, 陈拓, 文陇英, 等. 两种圆柏属常绿植物叶片稳定碳同位素的季节变化及其指示意义[J]. 冰川冻土, 2010, 32: 1030-1034.]
[10]
Liu Xiaohong, An Wenling, Liang eryuan, et al. Spatio-temporal variability and climatic significance of tree ring's δ13 C of Picea crassifolia on the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32: 666-676. [刘晓宏, 安文玲, 梁尔源, 等. 祁连山青海云杉树轮δ13C的时空变化及其气候意义[J]. 冰川冻土, 2010, 32: 666-676.]
[11]
Qin Dahe, Luo Yong, Chen Zhenlin, et al. Latest advances in climate change sciences: Interpretation of the synthesis report of the IPCC Fourth Assessment Report [J]. Advances in Climate Change, 2007, 3: 311-314. [ 秦大河, 罗勇, 陈振林, 等. 气候变化科学的最新进展: IPCC第四次评估综合报告解析 [J]. 气候变化研究进展, 2007, 3: 311-314.]
[12]
Xiao Chunwang, Dong Ming, Zhou Guangsheng, et al. Response of Salix psammophila seedling to simlated precipitation change in Ordas Plateau[J]. Acta Ecologica Sinica, 2001, 21; 171-176. [肖春旺, 董鸣, 周广胜, 等. 鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J]. 生态学报, 2001, 21; 171-176.]
[13]
Zhao Wenzhi, Cheng Guodong. Review on the study on ecological hydrological processes in arid area[J]. Chinese Sci. Bull, 2001, 46: 1851-1857. [赵文智, 程国栋. 干旱区生态水文过程研究若干问题评述[J]. 科学通报, 2001, 46: 1851-1857.]
[14]
Ma~ Fei, Zhao Changming, Milne R, et al. Enhanced drought-tolerance in the homoploid hybrid speciese Pinus densata: implication for its habitat divergence from two progenitors[J]. New Phytologist, 2010, 185: 204-216.
[15]
Sinclair T R, Tanner C B, Bennett J M. Water-use efficiency in crop production[J]. BioScience, 1984, 34: 36-40.
[16]
Hirose T. Nitrogen turnover and dry matter production of a Solidago altissima population[J]. Japanese Journal of Ecology, 1971, 21: 18-32.
[17]
Vitousek P M. Nutrient cycling and nutrient use efficiency[J]. American Naturalist, 1982, 119: 553-572.
[18]
Li Hesheng. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000: 164-261.
[19]
Gower S T, Vogt K A, Grier C C. Carbon dynamics of Rocky Mountain Douglas-fir. Influence of water and nutrient availability[J]. Ecological Monographs, 1992, 62: 43-65.
[20]
Becker M, Nieminen T M, Geremia F. Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2[J] Annuals of Forest Science, 1994, 51: 477-492.
[21]
Larcher W. Physiological Plant Ecology[M]. Berlin: Springer, 1995: 1-506.
[22]
Kozlowski T T, Pallardy S G. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Botany Review, 2002, 68: 270-334.
[23]
Yin Chunying, Wang Xiang, Duan Baoli, et al. Early growth, dry matter allocation and water use efficiency as affected by water stress[J]. Environmental and Experimental Botany, 2005, 53: 315-322.
[24]
Yin Chunying, Duan Baoli, Wang Xiang, et al. Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application[J]. Plant Science, 2004, 167: 1091-1097.
[25]
Yang Jianwei, Liang Zongsuo, Han Ruilian, et al. Water use efficiency and water consumption characteristics of Poplar under soil drought conditions[J]. Acta Phytoecologica Sinica, 2004, 28: 630-636. [杨建伟, 梁宗锁, 韩蕊莲, 等. 不同干旱土壤. 条件下杨树的耗水规律及水分利用效率研究 [J]. 植物生态学报, 2004, 28: 630-636.]
[26]
Deng Shiyang, Cheng Jianjun. Effects of nitrogen nutrient on the drought adaptability of tobacco plants[J]. Arid Zone Research, 2007, 24: 499-503. [邓世媛, 陈建军. 氮素营养对烤烟抗旱适应性的影响 [J]. 干旱区研究, 2007, 24: 499-503.]
[27]
Marshall J G, Rutledge R G, Blumwald E, et al. Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol[J]. Tree Physiology, 2000, 20: 701-707.
[28]
Ma Fei, Ji Mingfei, Cheng Litong, et al. Responses of Pinus tabulae formis seedlings to different soil water moistures in ecophysiological characteristics[M]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29: 0548-0554. [马飞, 姬明飞, 陈立同, 等. 油松幼苗对干旱胁迫的生理生态响应[J]. 西北植物学报, 2009, 29: 0548-0554.]
[29]
Monson R K, Grant M C. Experimental studies of ponderosa pine. Ⅲ. Differences in photosynthesis, stomatal conductance, and water-use efficiency between two genetic lines[J]. American Journal of Botany, 1989, 76: 1041-1047.
[30]
Green T H, Mitchell R J. Effects of nitrogen on the response of loblolly pine to water stress. I. Photosynthesis and stomatal conductance[J]. New Phytologist, 1992, 122: 627-633.
[31]
Polley H W, Johnson H B, Marino B D, et al. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations[J]. Nature, 1993, 361: 61-63.
[32]
Francey R J, Farquhar G D. An explanation of 13C/12C~ variation in tree rings[J]. Nature, 1982, 297: 28-31.
[33]
Warren C R, McGrath J F, Adams M A. Water availability and carbon isotope discrimination in conifers[J]. Oecologia, 2001, 127: 476-486.
[34]
Ferrio J P, Florit A, Vege A, et al. δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis[J]. Oecologia, 2003, 137: 521-518.
[35]
Aerts R, Chapin III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 2000, 30: 1-67.
[36]
Llorens L, Penuelas J, Estiarte M. Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions[J]. Physiologia Plantarum, 2003, 119: 231-243.
[37]
Duan B L, Lu Y W, Yin C Y, et al. Physiological responses to drought and shade in two contrasting Picea asperata populations[J]. Physiologia Plantarum, 2005, 124: 476-484.
[38]
Kalapos T, Van den Boogaard R, Lambers H. Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species[J]. Plant Soil 1996, 185: 137-49.
[39]
Nagakura J, Shigenaga H, Akama A, et al. Growth and transpiration of Japanese cedar(Cryptomeria japonica)and Hinoki cypress(Chamaecyparis obtusa)seedlings in response to soil water content[J]. Tree Physiology, 2004, 24: 1203-1208.
[40]
Otieno D O, Schmidt M W T, Adiku S, et al. Physiological and morphological responses to water stress in two Acacia species from contrasting habitats[J]. Tree Physiology, 2005, 25: 361-71.
[41]
Bailly C, Benamar A, Corbineau F. Changes in malondialdehyde content and in superoxide dismutase, actalase glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging[J]. Physiologia Plantarum, 1996, 97: 104-110.