Zhu Yuanlin. Studies on strength and creep behavior of frozen soils in China[J]. Journal of Glaciology and Geocryology, 1988, 10(3): 333-337. [朱元林. 我国冻土强度与蠕变研究[J]. 冰川冻土, 1988, 10(3): 333-337.]
[2]
Tsytovich N A, Sumgin M I. Principles of mechanics of frozen ground//US SIPRE Transl, 1937, 19: 106-107.
[3]
Sayles F H. Creep of Frozen Silt and Clay. USA Cold Regions Research and Engineering Laboratory, 1974: 252.
[4]
Ma Wei, Wu Ziwang, Pu Yibin, et al. Monitoring the change of structure in frozen soil in triaxial creep process by CT[J]. Journal of Glaciology and Geocryology, 1997, 19(1): 52-57. [马巍, 吴紫汪. 冻土三轴蠕变过程中结构变化的CT动态监测 [J].冰川冻土, 1997, 19(1): 52-57.]
[5]
Wu Ziwang, Ma Wei. Strength and Creep of Frozen Soil[M]. Lanzhou: Lanzhou University Press, 1994.
[6]
Ma Wei, Wu Ziwang, Sheng Yu. Effect of confining pressure on strength behavior of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 7-11. [马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995, 17(5): 7-11.]
[7]
Ma Wei, Wu Ziwang, Chang Xiaoxiao. Strength characteristics of frozen sandy soil under high confining pressure[J]. Journal of Geotechnical Engineering, 1996, 18(3): 268-272. [马巍, 吴紫汪, 常小晓. 高围压下冻结砂土的强度特性[J]. 冰川冻土, 1996, 18(3): 268-272.]
[8]
Ma Wei, Wu Ziwang, Zhang Lixin, et al. Mechanisms of strength weakening of frozen soils under high confining pressure[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 28-32. [马巍, 吴紫汪, 张立新, 等. 高围压下冻土强度弱化的机理分析[J]. 冰川冻土, 1999, 21(1): 28-32.]
[9]
Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of Frozen Soils[M]. Beijing: Science Press, 2010.
[10]
Wu Ziwang, Ma Wei, Zhang Changqing, et al. Strength characteristics of frozen sandy soil[J]. Journal of Glaciology and Geocryology, 1994, 16(1): 15-20. [吴紫汪, 马巍, 张长庆, 等. 冻结砂土的强度特性[J]. 冰川冻土, 1994, 16(1): 15-20.]
[11]
Gilpin R R. A model for the prediction of ice lensing and frost heave[J]. Water Resource Research, 1985, 21: 281-296.
[12]
Lai Yuanming, Zhang Yao, Zhang Shujuan, et al. Experimental study of strength of frozen sandy soil under different water contents and temperatures[J]. Rock and Soil Mechanics, 2009, 30(12): 3666-3670. [赖远明, 张耀, 张淑娟, 等. 超饱和含水率和温度对冻结砂土强度的影响[J]. 岩土力学, 2009, 30(12): 3666-3670.]
[13]
Ma Xiaojie, Zhang Jianming, Chang Xiaoxiao, et al. Experimental research on strength of warm and ice-rich frozen clays[J]. Rock and Soil Mechanics, 2008, 29(9): 2499-2502. [马小杰, 张建明, 常小晓, 等. 高温-高含冰量冻结粘土强度实验研究[J]. 岩土力学, 2008, 29(9): 2499-2502.]
[14]
Phukan A. Long-term creep deformation of roadway embankment on ice-rich permafrost//Proceedings of the 4th International Conference on Permafrost. Washington DC: National Academy Press, 1983: 994-999.
[15]
Peretrukhin N A, Potatueva T V. Laws governing interactions between railroad roadbeds and permafrost//Proceedings of the 4th International Conference on Permafrost. Washington DC: National Academy Press, 1983: 984-987.
[16]
Zhang Jianming, Liu Duan, Qi Jilin. Estimation on the settlement and deformation of embankment along Qinghai-Tibet Railway in permafrost regions[J].China Railway Science, 2007, 28(3): 13-17. [张建明, 刘端, 齐吉琳. 青藏铁路冻土路基沉降变形预测[J]. 中国铁道科学, 2007, 28(3): 13-17.]
[17]
Liu Yongzhi, Wu Qingbai, Zhang Jianming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 10-15. [刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24(1): 10-15.]
[18]
Zaretskii Yu K. Calculation of settlements of thawing soil[J]. Osn.Fundam.Mekh.Gruntov, 1968, 3: 3-6.
[19]
Yao Xiaoliang. Theoretical and Application Study on Thaw Settlement of Frozen Soils. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2010. [姚晓亮. 冻土融化沉降理论与应用研究. 兰州: 中国科学院寒区旱区环境与工程研究所, 2010.]
[20]
Cheng Guodong. Research on engineering geology of the roadbed in permafrost regions of Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2003, 23(2): 134-141. [程国栋. 青藏高原多年冻土区路基工程地质研究[J]. 第四纪研究, 2003, 23(2): 134-141.]
[21]
Ma Wei, Cheng Guodong, Wu Qingbai. Thoughts on solving frozen soil engineering problems in the construction of Qinghai-Tibet railroad[J]. Science & Technology Review, 2005(1): 23-28.
[22]
Zhu Yuanlin, Zhang Jiayi. Elastic and compressive deformation of frozen soils[J]. Journal of Glaciology and Geocryology, 1982, 4(3): 29-40. [朱元林, 张家懿. 冻土的弹性变形及压缩变形[J]. 冰川冻土, 1982, 4(3): 29-40.]
[23]
Zhu Yuanlin, Liu Yongzhi, Xie Xiande. Field experiments of creep of ground ice on Qinghai-Xizang Plateau//Professional papers on permafrost studies of Qinghai-Xizang Plateau. Beijing: Science Press, 1983. [朱元林, 刘永智, 谢先德. 青藏高原地下冰现场蠕变试验研究//青藏高原冻土研究论文集. 北京: 科学出版社,1983.
[24]
Qin Yinghong, Zhang Jianming, Zheng Bo. Determination of creep-settlement-steady time in high temperature frozen earth area on QingZang railway[J]. Subgrade Engineering, 2007(6): 53-54.
[25]
Zheng Bo, Zhang Jianming, Ma Xiaojie, et al. Study on compression deformation of warm and ice-rich frozen soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Supp.1): 3064-3069. [郑波, 张建明, 马小杰, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3064-3069.]
[26]
Ma Xiaojie, Zhang Jianming, Zheng Bo, et al. Study on warm and ice-rich permafrost beneath Qinghai-Tibet Railway embankment with pressiometer[J]. Rock and Soil Mechanics, 2008, 29(3): 765-768. [马小杰, 张建明, 郑波, 等. 青藏铁路路基下高温-高含冰量冻土旁压实验研究[J]. 岩土力学, 2008, 29(3): 765-768.]
[27]
Shi Yehui, He Ping, Bian Xiaolin. Test research for dynamics parameter of high temperature frozen soil on Qinghai-Tibet railway[J]. Subgrade Engineering, 2006(5): 93-95.
[28]
Zheng Bo, Zhang Jianming, Qin Yinghong. Investigation for the deformation of embankment underlain by warm and ice-rich permafrost[J]. Cold Regions Science and Technology, 2010, 60: 161-168.
[29]
Zaretskiy Yu K, Shchobolev A G. A mathematical model for the viscoplastic deformation of frozen soils//Proceedings of the 4th International Conference on Permafrost. Washington DC: National Academy Press, 1983: 1457-1462.
[30]
Vyalov S S. Strength and creep of frozen soils and calculations for ice-soil retaining structures. USA Cold Regions Research and Engineering Laboratory, Translation76, 1962, AD484093.
[31]
Cai Zhongmin, Zhu Yuanlin, Zhang Changqing. Viscoelastpplastic constitutive model of frozen soil and determination of its parameters[J]. Journal of Glaciology and Geocryology, 1990, 12(1): 31-40. [蔡中民, 朱元林, 张长庆. 冻土的粘弹塑性本构模型及其材料参数的确定[J].冰川冻土, 1990, 12(1): 31-40.]
[32]
Miao Tiande, Wei Xuexia, Zhang Changqing. Microstructure damage of frozen soil during creep[J]. Science in China(Series B), 1995, 25(3): 309-317. [苗天德, 魏雪霞, 张长庆. 冻土蠕变过程的微结构损伤理论[J]. 中国科学 (B辑), 1995, 25(3): 309-317.]
[33]
Gao Zhihua, Lai Yuanming, Xiong Ergang, et al. Experimental study of characteristics of warm and ice-rich frozen clay under cyclic loading[J]. Rock and Soil Mechanics, 2010, 31(6): 1745-1751. [高志华, 赖远明, 熊二刚, 等. 循环荷载作用下高温-高含冰量冻土特性实验研究[J]. 岩土力学, 2010, 31(6): 1745-1751.]
[34]
Lai Yuanming, Li Chuangyang, Gao Zhihua, et al. Stochastic damage constitutive model for warm frozen soil under uniaxial compression and its strength distribution[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 970-976. [赖远明, 李双洋, 高志华, 等. 高温冻结粘土单轴随机损伤本构模型及强度分布规律[J]. 冰川冻土, 2007, 29(6): 970-976.]
[35]
Li Shuangyang, Lai Yuanming, Zhang Mingyi, et al. Study on distribution laws of elastic modulus and strength of warm frozen soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (Suppl.2): 4300-4305. [李双洋, 赖远明, 张明义, 等. 高温冻土弹性模量及强度分布规律研究[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4300-4305.]
[36]
Li Qingze, Lai Yuanming, Xu Xiangtian, et al. Triaxial strength distribution of warm frozen soil and its damage statistical constitutive model [J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1235-1241. [李清泽, 赖远明, 徐湘田, 等. 高温冻土三轴强度分布及损伤统计本构模型[J]. 冰川冻土, 2010, 32(6): 1235-1241.]
[37]
Qin Yinghong, Zhang Jianming, Zheng Bo, et al. Experimental study for the compressible behavior of warm and ice-rich frozen soil under the embankment of Qinghai-Tibet railroad[J].Cold Regions Science and Technology, 2009, 57: 148-153.
[38]
Arenson L U, Springman S M.Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to {0 ℃}[J]. Canadian Geotechnical Journal, 2005, 42: 431-442.
[39]
Arenson L U, Springman S M. Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples[J]. Canadian Geotechnical Journal, 2005, 42: 412-430.
[40]
Lackner R, Pichler C, Kloiber A. Artificial ground freezing of fully saturated soil: viscoelastic behavior[J]. Journal of Engineering Mechanics, 2008, 134(1): 1-11.
[41]
Glen J W. Creep of polycrystalline ice[J]. Proceedings of the Royal Society of London, Series A, 1955, 228(1175): 519-538.
[42]
Glen J W. The Mechanics of Ice.U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., CRREL Monograph 11-C2b, 1975.
[43]
Martin R T, Ting J M, Ladd CC. Creep Behavior of Frozen Sand. Final Report Part 1. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass., Research Report R18-19, 1981.
[44]
Tong Boliang, Li Shude. Some characteristics of permafrost on Qinghai-Xizang Plateau and a few factors affecting them//Professional Papers on Permafrost Studies of Qinghai-Xizang Plateau. Beijing: Science Press, 1983: 1-11. [童伯良, 李树德. 青藏高原多年冻土的某些特征及其影响因素//青藏冻土研究论文集. 北京: 科学出版社, 1983: 1-11.]
[45]
Qin Dahe. Assessments on the Environment over Western China[M]. Beijing: Science Press, 2002.
[46]
Tong Changjiang, Wu Qingbai. The effect of climate warming on the Qinghai-Tibet highway[J]. Cold Regions Science and Technology, 1996, 24(1): 101-106.
[47]
Wang Shaoling, Zhao Xiufeng, Guo Dongxin, et al. Response of permafrost to climate change in the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1996, 18(Suppl.): 157-165. [王绍令, 赵秀峰, 郭东信, 等. 青藏高原冻土对气候变化的响应[J]. 冰川冻土, 1996, 18(增刊): 157-165.]
[48]
Li Shuxun, Cheng Guodong, Guo Dongxin. The future thermal regime of numerical simulating permafrost on Qinghai-Xizang Plateau, China, under climate warming[J]. Science in China (Series D), 1996, 39(4): 434-441. [李述训, 程国栋, 郭东信. 气候持续变暖条件下, 青藏高原多年冻土变化趋势数值模拟[J]. 中国科学(D辑: 地球科学), 1996, 39(4): 434-441.]
[49]
Qi Jilin, Zhang Jianming, Yao Xiaoliang, et al. Analysis of settlements of constructions in permafrost regions[J]. Rock and Soil Mechanics, 2009, 30(Suppl.2): 1-8. [齐吉琳, 张建明, 姚晓亮, 等. 多年冻土地区构筑物沉降变形分析[J]. 岩土力学, 2009, 30(增刊2): 1-8.]
[50]
Liu Yongzhi, Wu Qingbai, Zhang Jianming, et al. Research on temperature of highway subgrade in Plateau Region with permafrost[J]. Highway, 2000 (2): 5-8.
[51]
Shields D H, Domaschuk L, Man C S, et al. Deformation properties of warm permafrost//Strength Testing of Marine Sediments: Laboratory and In-Situ Measurements. San Diego, CA, January 26-27, 1984: 473-165.
[52]
Foster M L, Washburn D S, Foote D S. OTH-Backscatter power plant foundation design for warm, ice-rich permafrost soils//Proceedings of the International Arctic Technology Conference. Anchorage, AK, USA, May29-31, 1991: 471-480.
[53]
Tsytovich N A. The Mechanics of Frozen Ground[M]. translated by Zhang Changqing, Zhu Yuanlin. Beijing: Science Press, 1985.
[54]
Lai Yuanming, Li Chuangyang, Gao Zhihua, et al. Stochastic damage constitutive model for warm frozen soil under uniaxial compression and its strength distribution[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 970-976. [赖远明, 李双洋, 高志华, 等. 高温冻结粘土单轴随机损伤本构模型及强度分布规律[J]. 冰川冻土, 2007, 29(6): 970-976.]
[55]
Qi Jilin, Zhang Jianming. Definition of warm permafrost based on mechanical properties of frozen soil//Proceedings of 9th International Conference on permafrost. Institute of Northern Engineering University of Alaska Fairbanks, 2008, 2: 1457-1461.
[56]
Konard J M, McCammon A W. Solute partitioning in freezing soils[J]. Canadian Geotechnical Journal, 1990, 27(6): 726-736.
[57]
Nersesova Z A, Tsytovich N A. Unfrozen water in frozen soils//Proceedings of 1st International Conference on permafrost. Washington, D C: National Academy of Science, 1963: 230-234.
[58]
Bouyocous G J, McCool M M. The freezing point method as a new means of measuring the concentration of the soil solution directly in the soil[J]. Michigan Agricultural Experiment Station Technical Bulletin, 1916, 24: 592-631.
[59]
Christ M, Kim Young-Chin, Park Jun-Bounm. The influence of the temperature and cycles on acoustic and mechanical properties of frozen soil[J]. KSCE Journal of Civil Engineering, 2009, 13(3): 153-159.
[60]
Williams P J. Suction and its effects in unfrozen water of frozen soils//Proceedings of 1st International Conference on permafrost. Washington, D C: National Academy of Science, 1963: 225-229.
[61]
Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of Frozen Soils[M]. Beijing: Science Press, 2010.
[62]
Xu Xiaozu, Oliphant J L, Tice A R. Soil-water potential and unfrozen water content and temperature[J]. Journal of Glaciology and Geocryology, 1985, 7(1): 1-12. [徐敩祖, J L.奥利奋特, A R.泰斯. 土水势、未冻水含量和温度[J]. 冰川冻土, 1985, 7(1): 1-12.]
[63]
Morgensten N R, Smith L B. Thaw-consolidation tests on remoulded clays[J]. Can. Geotech.J., 1973, 10: 25-40.
[64]
Morgensten N R, Nixon J F. One-dimensional consolidation of thawing soils[J]. Can. Geotech.J., 1971, 8: 558-565.
[65]
Nixon J F, Morgensten N R. Thaw-consolidation test on undisturbed fine-grained permafrost[J]. Can.Geotech.J., 1974, 11: 202-214.
[66]
Foriero A, Ladanyi B.FEM assessment of large-strain thaw consolidation[J]. Journal of Geotechnical Engineering, 1995, 121(2): 126-214.
[67]
Li Ning, Chen Bo, Chen Feixong, et al. The coupled heat-moisture-mechanical model of the frozen soil[J]. Cold Regions Science and Technology, 2000, 31: 199-205.
[68]
He Ping, Cheng Guodong, Yu Qihao, et al. A coupled model of water and stress fields of sutured soil during freezing[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 135-138. [何平, 程国栋, 俞祁浩, 等. 饱和正冻土中的水、热、力耦合模型[J]. 冰川冻土, 2000, 22(2): 135-138.]
[69]
Wu Yaping, Zhu Yuanlin, Guo Chunxiang, et al. Multifield coupling model and its applications for pile foundation in permafrost[J]. Science in China (Series D), 2005, 35(4): 378-385. [吴亚平, 朱元林, 郭春香, 等. 寒区桩基础的多场耦合分析模型及其应用[J]. 中国科学(D辑: 地球科学), 2005, 35(4): 378-385.]
[70]
Sutherland H B, Gaskin P N. Pore water and heaving pressures developed in partially frozen soils//Proceedings of 2nd International Conference on Permafrost. Washington, D C: National Academy of Science, 1973: 409-419.
[71]
Miller R D. Soil freezing in relation to pore water pressure and temperature//Proceedings of 2nd International Conference on Permafrost. Washington, D C: National Academy of Science, 1973: 344-352.
[72]
Koopmans R W R, Miller R D. Soil freezing and soil water characteristic curves[J]. Soil Science Society of America Journal, 1966, 30(6): 680-685.
[73]
Eigenbrod K D, Knutsson S, Sheng D. Pore-water pressures in freezing and thawing fine-grained soils[J]. Journal of Cold Regions Engineering, 1996, 10(2): 77-91.
[74]
Akagawa S, Hiasa S, KanieS, et al. Pore water and effective pressure in the frozen fringe during soil freezing//Proceedings of the 9th International Conference on Permafrost(Vol. 1). University of Alaska Fairbanks, 2008: 13-18.
[75]
Hazirbaba K. Evaluation of temperature and free-thaw effects on excess pore pressure generation of fine-grained soils[J]. Soil Dyn. Earthquake Eng., 2010, doi:10.1016/j.soildyn.2010.09.006.
[76]
Goughnour R R, Andersland O B. Mechanical properties of sand-ice system[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4): 923-950.
[77]
Jones S J, Parameswaran V B. Deformation behavior of frozen sand-ice materials under triaxial compression//Proceedings of the 4th International Conference on Permafrost, Fairbanks, Alaska, 1983: 560-565.
[78]
Vayalov C C. Rhelogy of Frozen Soil[M]. Translated by Liu Jiankun, Liu Yaojun, Xu Yan. Beijing: China Railway Publishing House, 2005.