Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537.
[2]
Farquhar G G, Hubick K T, Condon A G, et al. Carbon isotope fractionation and plant water use efficiency[M]//Stable Isotope in Ecological Research. New York: Springer, 1989: 21-40.
[3]
Cao Shengkui, Feng Qi, Si Jianhua, et al. Summary on the plant water use efficiency at leaf level[J]. Journal of Desert Research, 2009, 29(5): 853-858. [曹生奎, 冯起, 司建华, 等. 植物水分利用效率研究方法综述[J]. 中国沙漠, 2009, 29(5): 853-858.]
[4]
Su Bo, Han Xingguo, Li Linhao, et al. Responses of δ13C value and water use efficiency of plant species to environmental gradients along the grassland zone of northeast china transect[J]. Chinese Journal of Plant Ecology, 2000, 24 (6): 648-655. [苏波, 韩兴国, 李凌浩, 等. 中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6): 648-655.]
[5]
Chen Tuo, Feng Huyuan, Xu Shijian, et al. Stable carbon isotope composition of desert plant leaves and water-use efficiency[J]. Journal of Desert Research, 2002, 22(3): 288-291. [陈拓, 冯虎元, 徐世健, 等. 荒漠植物叶片碳同位素组成及其水分利用效率[J]. 中国沙漠, 2002, 22(3): 288-291.]
[6]
Feng Huyuan, An Lizhe, Chen Tuo, et al. The relationship between foliar stable carbon isotope composition in Pedicularis L. and environmental factors[J]. Journal of Glaciology and Geocryology, 2003, 25(1): 88-93. [冯虎元, 安黎哲, 陈拓, 等. 马先蒿属(Pedicularis L.)植物稳定碳同位素组成与环境因子之间的关系[J]. 冰川冻土, 2003, 25(1): 88-93.]
[7]
Ehleringer J R, Rundel P W, Palma B, et al. Carbon isotope ratios of Atacama desert plants reflect hyperaridity of region in northern of Chile[J]. Revista Chilena de Historia Natural, 1998, 71: 79-86.
[8]
Garten C T, Taylor G E. Foliar δ13C with in a temperate deciduous forest: Spatial, temporal, and species sources of variation[J]. Oecologia, 1992, 90: 1-7.
[9]
Qu Chunmei, Han Xingguo, Su Bo, et al. The characteristics of foliar δ13C values of plants and plant water use efficiency indicated by δ13C values in two fragmented rainforests in Xishuangbanna, Yunnan[J]. Acta Botanica Sinica, 2001, 43(2): 186-192. [渠春梅, 韩兴国, 苏波, 等. 云南西双版纳片断化热带雨林植物叶片δ13C 值的特点及其对水分利用效率的指示[J]. 植物学报, 2001, 43(2): 186-192.]
[10]
Wang Guoan, Han Jiamen. δ13C Variations of C-3 plants in dry and rainy seasons[J]. Marine Geology and Quaternary Geology, 2001, 21(4): 43-47. [王国安, 韩家懋. C-3植物碳同位素在旱季和雨季中的变化[J]. 海洋地质与第四纪地质, 2001, 21(4): 43-47.]
[11]
Wang G A, Han J M, Zhou L P, et al. Carbon isotope ratios of plant s and occurrences of C-4 species under different soil moisture regimes in arid region of Northwest China[J]. Physiology Plantarum, 2005, 125(1): 74-81.
[12]
Chen S P, Bai Y, Lin G, et al. Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China[J]. Journal of Arid Environments, 2007, 71: 12-28.
[13]
Li Xiangbo, Chen Jianfa. Advances in study on plant carbon isotope discrimination and environment change[J]. Advance in Earth Sciences, 1998, 13(3): 285-290. [李相博, 陈践发. 植物碳同位素分馏作用与环境变化研究进展[J]. 地球科学进展, 1998, 13(3): 285-290.]
[14]
Feng Qi, Si Jianhua, Li Jianlin, et al. Feature of root distribution of Populus euphratica and its water uptake m odel in extreme arid region[J]. Advances in Earth Science, 2008, 23(7): 666-772. [冯起, 司建华, 李建林, 等. 胡杨根系分布特征与根系吸水模型建立[J]. 地球科学进展, 2008, 23(7): 666-772.]
[15]
Cao Shengkui, Feng Qi, Su Yunhong, et al. Relationships between foliar carbon isotope discrimination with potassium concentration and ash content of the riparian plants in the extreme arid region of China[J]. Photosynthetica, 2009, 47: 499-509.
[16]
Yan Changrong, Han Xingguo, Chen Linzhi, et al. Foliar δ13C within temperate deciduous forest: its spatial change and interspecies variation[J]. Acta Botanica Sinica, 1998, 40(9): 853-859. [严昌荣, 韩兴国, 陈灵芝, 等. 温暖带落叶林主要植物叶片中δ13C值的种间差异及时空变化[J]. 植物学报, 1998, 40(9): 853-859.]
[17]
Chen Shipin, Bai Yonggei, Han Xingguo, et al. Variations in foliar carbon isotope composition and adaptive strategies of Carex korshinskyi along a soil moisture gradient[J]. Acta Phytoecologica Sinica, 2004, 28(4): 515-522. [陈世苹, 白永飞, 韩兴国, 等. 沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化[J]. 植物生态学报, 2004, 28(4): 515-522.]
[18]
Ehleringer J R. Variation in leaf carbon isotope discrimination in Encelia farinosa: implications for growth, competition, and drought survival[J]. Oecologia, 1993, 95: 340-346.
[19]
Pate J S. Carbon isotope discrimination and plant water-use efficiency[M]//Stable Isotope Technique in the Study of Biological Processes and Functioning of Ecosystems. Dordrecht, Boston, London: Kluwer Academic Publishers, 2001: 19-36.
[20]
Ehleringer J R, Cook C S. Comparative ecophysiology of Encenllia farinosa and Encelia frutescens. I. Energy balance considerations[J]. Oecologia, 1988, 76: 553-561.
[21]
Singh P N, Joshi B P, Singh G. Water use and yield response of wheat to irrigation and nitrogen on an alluvial soil in North India[J]. Agricultural Water Management, 1987, 12: 311-315.
[22]
Wang Hui. Effect of environmental factors to water use efficiency in winter wheat[J]. Acta Ecologica Sinica, 1996, 16(6): 584-590. [王慧. 环境因子对冬小麦水分利用效率的影响[J]. 生态学报, 1996, 16(6): 584-590.]
[23]
Stewart G R, Turnbull M H, Schmidt S, et al. 13C natural abundance in plant communities along a rainfall gradient: A biological integrator of water availability[J]. Aus. J Plant physiol, 1995, 22: 51-55.