全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2012 

冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响

, PP. 1499-1507

Keywords: 青藏高原,高寒沼泽草甸,高寒沙化草原,冻融循环,克隆文库

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过构建16SrRNA基因克隆文库,研究了冻融循环对青藏高原腹地北麓河的高寒沼泽草甸和高寒沙化草原两种不同生态系统土壤细菌群落结构的影响.结果表明α-、β-、γ-和δ-变形菌门(α-、β-、γ-和δ-Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)和浮霉菌门(Planctomycetes)为两个生态系统土壤共有的细菌类群,其中,变形菌门、酸杆菌门及浮霉菌门细菌为研究区域优势菌,而厚壁菌门(Firmicutes)为高寒沼泽草甸土壤所特有,疣微菌门(Verrucomicrobia)和绿弯菌门(Chloroflexi)细菌是高寒沙化草原土壤特有的细菌类群,表明青藏高原腹地两种生态系统土壤具有丰富的细菌多样性.冻融循环会降低区域土壤的细菌多样性,随冻融循环,高寒沼泽草甸和高寒沙化草原生态系统土壤放线菌门丰度均呈现下降趋势,但大部分细菌随冻融循环的变化在两种生态类型中呈现不同的变化规律,结果说明冻融循环对于不同生态系统土壤细菌群落结构的影响既存在相似性,也存在着较大的差异.

References

[1]  Liu Guangxiu, Ma Xiaojun, Chen Tuo, et al. Progress and significance of studies on microorganisms in permafrost sediments[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 188-191. [刘光琇, 马晓军, 陈拓, 等. 冻土微生物研究进展与意义[J]. 冰川冻土, 2004, 26(2): 188-191.]
[2]  Jin Huijun, Cheng Guodong, Lin Qin. The effects of freeze thaw processes and subzero temperature on soil chemistry and microbiology//Proceeding of the Fifth Chinese Conference on Glaciology and Geocryology. Lanzhou: Gansu Culture Press,1996:1092-1103. [金会军, 程国栋, 林清. 冻融作用和负温对土壤化学及微生物的影响//第五届全国冰川冻土学大会论文集. 兰州: 甘肃文化出版社, 1996: 1092-1103.]
[3]  Vorobyova E , Soina V , Gorlenko M , et al. The deep cold biosphere: facts and hypothesis [J]. FEMS Microbiol Rev, 1997, 20: 277-290.
[4]  Finegold L. Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point[J]. Adv Space Res, 18(12): 87-95.
[5]  White D, Crosbie J D, Atkinson D, et al. Effect of an introduced inoculum on soil microbial diversity[J]. FEMS Microbiol Ecol, 1994, 14(2): 169-178.
[6]  Jin H, Li S, Cheng G, et al. Permafrost and climatic change in China[J]. Global Planet Change, 2000, 26: 387-404.
[7]  Wu Shaohong, Yin Yunhe, Zhang Du, et al. Climate changes in the Tibetan Plateau during the last three decades[J]. Acta Geographica Sinica, 2005, 61(1): 1-11. [吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30年气候变化趋势[J]. 地理学报, 2005, 61(1): 1-11.]
[8]  Yang Sizhong, Jin Huijun. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-froze ground and in permafrost[J]. Acta Ecologica Scnica, 2008, 28(10): 5065-5074. [杨思忠, 金会军. 冻融作用对冻土区微生物生理和生态的影响. 生态学报, 2008, 28(10): 5065-5074.]
[9]  Spormann A M, Widdel F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria[J]. Biodegradation, 2000, 11: 85-105.
[10]  Ping C L, Michaelson G J, Kimble J M. Carbon storage along a latitudinal transect in Alaska[J]. Nutr Cycl Agroecosyst, 1997, 49: 234-242.
[11]  Zhang Dianfa, Zheng Qihong. Simulation of water-salt movement law under the freeze-thawing condition[J]. Progress in Geography, 2005, 24(4): 46-55. [张殿发, 郑琦宏. 冻融条件下土壤中水盐运移规律模拟研究[J]. 地理科学进展, 2005, 24 (4): 46-55.]
[12]  Koponen H T, Jaakkola T, Kein?nen-Toivola M M, et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles[J]. Soil Biol Biochem, 2006, 38: 1861-1871.
[13]  Feng X, Nielsen L L, Simpson M. Responses of soil organic matter and microorganisms to freeze-thaw cycles[J]. Soil Biol Biochem, 2007, 39: 2027-2037.
[14]  Walker V K, Palmer G R, Voordouw G. Freeze-thaw tolerance and cues to the winter survival of soil community[J]. Appl Environ Microbiol, 2006, 72: 1784-1792.
[15]  Visnivetskaya T A, Siletzky R, Jeffries N, et al. Effect of low temperature and culture media on the growth and freeze thawing tolerance of Exiguobacteriumstrains [J]. Cryobiology, 2007, 54: 234-240.
[16]  Rodrigues D F, Tiedje J M. Coping with our cold planet[J]. Appl Environ Microbiol, 2008, 74: 1677-1686.
[17]  Chen Wei, Zhang Wei, Li Shiweng, et al. Features of soil cultivable microorganism quantity and diversity distribution under different alpine grassland ecosystems in Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1419-1426. [陈伟, 张威, 李师翁, 等. 青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究. 冰川冻土, 2011, 33(6): 1419-1426.]
[18]  Wang Lu, Dong Xiaopei, Zhang wei, et al. Quantitative characters of microorganism in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 436-441. [王鹭, 董小培, 张威, 等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系. 冰川冻土, 2011, 33(2): 436-441.]
[19]  Hu Ping, Wu Xiukun, Li Shiwen, et al. Progress of studies on permafrost microbial ecology in the past 10 years[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 732-739. [胡平, 伍修琨, 李师翁, 等. 近10a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3): 732-739.]
[20]  M?nnist? M K, Tiirola M, H?ggblom M M. Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil[J]. Microbial Ecol, 2009, 58: 621-631.
[21]  Yergeau W, Kowalchuk G A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequence[J]. Environ Microbiol, 2008, 10:2223-2235.
[22]  Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-xizang Tibet Plateau in the next 50 and 100 years [J]. Science in China Series D,2004, 34( 6) : 528- 534. [南卓铜, 李述训, 程国栋. 未来50与100a青藏高原多年冻土变化情景预测. 中国科学(D辑), 2004, 34(6): 528-534.]
[23]  Wang Mou, Li Yong, Bai Xianzhou, et al. The impact of global warming on vegetation resources in the hinterland of the Qinghai-Tibet Plateau [J]. Journal of Natural Resources, 2004, 19(3): 331-336. [王谋, 李勇, 白宪洲, 等. 全球变暖对青藏高原腹地草地资源的影响[J]. 自然资源学报,2004, 19(3): 331-336. ]
[24]  Clark F E, Pawl E A. The micro flora of grassland[J]. Adv Agron, 1970, 22: 375- 435.
[25]  Ren Zuohua, Zhang Yuguang, Li Diqiang, et al. The soil microbial activities and microbial biomass in Sanjiangyuan Alpine glassland[J]. Acta Ecologica Sinica, 2011, 31(11): 3232-3238. [任佐华, 张于光, 李迪强, 等. 三江源地区高寒草原土壤微生物活性和微生物量[J]. 生态学报, 2011, 31(11): 3232-3238.]
[26]  Liu Guangxiu, Hu Changqing, Zhang Jingbo, et al. Microbial communities in permafrost of the Tibetan Plateau and their significance[J]. Journal of Glaciology and Geocryology, 2001, 23(4): 419-422. [刘光琇, 胡长勤, 张靖博, 等. 青藏高原多年冻土微生物的分离分析及其意义[J]. 冰川冻土, 2001, 23(4): 419-422.]
[27]  Zhang G, Ma X, Niu F, et al. Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai-Tibet Plateau permafrost region[J]. Extremophiles, 2007, 11: 415-424.
[28]  Zhang G, Niu F, Ma X, et al. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region[J]. Can J Microbiol, 2007, 53:( 8) 1000-1010.
[29]  Zhao Yonghua, Zhao Lin, Wu Tianyun, et al. Variation of CO2concentration in active layer in Beiluhe permafrost region of the Tibetan Plateau during winter and spring[J]. Journal of Glaciology and Geocryology, 2006, 28(2): 183-190. [赵拥华, 赵林, 武天云, 等. 冬春季青藏高原北麓河多年冻土活动层中气体CO2浓度分布特征[J].冰川冻土, 2006, 28(2): 183-190.]
[30]  Zhang Gaosen, Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environmental factors in glacier foretland[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 965-971. [章高森, 张威, 刘光琇, 等. 环境因素主导者冰川前沿裸地好氧异样细菌群落的分布[J].冰川冻土, 2012,34(4): 965-971.]
[31]  Zhang Wei, Zhang Gaosen, Liu Guangxiu, et al. Characteristics of cultivable microbial community number and structure at the southeast edge of Tengger Desert[J]. Acta Ecology Sinica, 2012,32(2):0567-0577. [张威, 章高森, 刘光琇, 等. 腾格里沙漠东南缘可培养微生物群落数量与结构特征[J].生态学报, 2012,32(2): 0567-0577.]
[32]  Giovannoni S J, Mullins T D, Field K G. Molecular ecology of aquatic microbes[M]. Berlin: Springer-Verlag Press, 1995.
[33]  Yue Jun, Liu Guangxiu, Zhang Gaosen et al. Changs in soil properties and culturable bacteria diversity in Zhadang glacier forland[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1180-1185. [岳君, 刘光琇, 章高森, 等. 念青唐古拉山扎当冰川退缩前沿土壤性质与可培养细菌多样性变化[J]. 冰川冻土, 2010, 32(6): 1180-1185.]
[34]  Lipson D A, Schmidt S K. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains[J]. Appl Environ Microbiol, 2004, 70(5): 2867-2879.
[35]  Costello E K, Schmidt S K. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment[J]. Environ Microbiol, 2006, 8(8): 1471-1486.
[36]  Shang Zhanhuan, Ding Lingling, Long Ruijun, et al. Studies on soil microorganism numbers of different degraded alpine meadows in the headwater area of Yangtze and Yellow Rivers[J].Grassland and Turf, 2006, 5: 3-7. [尚占环, 丁玲玲, 龙瑞军, 等. 江河源区高寒草地土壤微生物数量特征[J]. 草原与草坪, 2006, 5: 3-7.]
[37]  Shang Zhanhuan, Ding Lingling, Long Ruijun, et al. Relationship between soil microorganisms, above-ground vegetation, and soil environmental of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2007, 16(1): 34-40. [尚占环, 丁玲玲, 龙瑞军, 等. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J]. 草业学报, 2007,16(1): 34-40.]
[38]  Zhang Y, Li D, Wang H, et al. The diversity of denitrifying bacteria in the alpine meadow soil of Sanjiangyuan natural reserve in Tibet Plateau[J]. ChineseScicencBulletin, 2006, 51(10): 1245-1254.
[39]  Zhang Y, Li D, Wang H, et al. Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China[J]. FEMS Microbiol Lett, 2006, 260: 134-142.
[40]  Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils[J]. Soil Biol Biochem, 1996, 28: 1061-1066.
[41]  Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Appl Soil Ecol, 2002, 21: 187-195.
[42]  Schimel J P, Mikan C. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle[J]. Soil Biol Biochem, 2005, 37(8): 1411-1418.
[43]  Bardgett R D, Leemans D K, Cook R, et al. Seasonality of soil biota of grazed and ungrazed hill grasslands[J]. Soil Biol Biochem, 1997, 29(8): 1285-1294.
[44]  Pesaro M, Widmer F, Nicollier G, et al. Effect of freeze thaw stress during soil storage on microbial communities and methidation degradation[J]. Soil Biol Biochem, 2003, 35: 1049-1061.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133