Guo Xiaoli, Zhao Wenwei, Sun Jinghui, et al. Advances of charcoal study for paleoenvironment in China[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 342-348. [郭小丽, 赵文伟, 孙静会, 等. 我国古环境中炭屑的研究现状与展望[J]. 冰川冻土, 2011, 33(2): 342-348.]
[2]
Wang Wei, Ma Yuzhen, Feng Zhaodong, et al. A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia[J]. Quaternary International, 2011, 229: 74-83.
[3]
Zhao Yan, Yu Zicheng, Zhao Wenwei. Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?[J]. Quaternary Science Reviews, 2011, 30: 1173-1184.
[4]
Rudaya N, Nazarova L, Nourgaliev D, et al. Mid-late Holocene environmental history of Kulunda, southern West Siberia: Vegetation, climate and humans[J]. Quaternary Science Reviews, 2012, 48: 32-42.
[5]
Tarasov P E, Bezrukova E V, Krivonogov S K. Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel[J]. Climate of the Past Discussions, 2009,5: 285-295.
[6]
Wick L, Lemcke G, Sturm M. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from laminated sediments of Lake Van, Turkey[J]. The Holocene, 2003, 13: 665-675.
[7]
Zhao Yan, Yu Zicheng, Zhao Cheng. Hemlock (Tsuga canadensis) declines at 9800 and 5300 cal. Yr BP caused by Holocene climatic shifts in northeastern North America [J]. The Holocene, 2010, 20(6): 877-886.
[8]
Wright H E. The use of surface samples in Quaternary pollen analysis [J]. Review of Palaeobotany and Palynology, 1967,2: 321-330.
[9]
Prentice I C. Pollen representation, source area, and basin size: towards a unified theory of pollen analysis [J]. Quaternary Research, 1985,23: 76-86.
[10]
Hjelmroos M, Franzen L G. Implications of recent long-distance pollen transport events for the interpretation of fossil pollen records in Fennoscandia[J]. Review of Palaeobotany and Palynology, 1994, 82: 175-189.
[11]
Sugita S. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation [J]. Journal of Ecology, 1994, 82: 881-897.
[12]
Blyakharchuk T A, Wright H E, Borodavko P S, et al. Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245: 518-534.
[13]
Rudaya N, Tarasov P, Dorofeyuk N, et al. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia [J]. Quaternary Science Review, 2009, 28: 540-554.
[14]
Jiang Heli, Zhao Jingdong, Yin Xiufeng, et al. New OSL chronology of the Last Glaciation in Kanas Valley, Altay Mountains, China [J]. Journal of Glaciology and Geocryology, 2012, 34(2): 304-320. [江合理, 赵井东, 殷秀峰, 等. 阿尔泰山喀纳斯河流域末次冰期OSL年代学新证[J]. 冰川冻土, 2012, 34(2): 304-320.]
[15]
Jia Jia, Xia Dunsheng, Jin Ming, et al. Typical loess/paleosol sequences in Weihe drainage areas: Environmental magnetism features and paleoclimate interpretation[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 92-97. [贾佳, 夏敦胜, 金明, 等. 渭河流域典型黄土剖面的环境磁学特征及其古气候意义[J]. 冰川冻土, 2010, 32(1): 92-97.]
[16]
Liu Xiaohong, An Wenling, Liang Eryuan, et al. Spatial-temporal variability and climatic significance of tree ring’s δ13C of Picea crassifoliaon the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 666-676. [刘晓宏, 安文玲, 梁尔源, 等. 祁连山清海云杉树轮δ13C 的时空变化及其气候意义[J]. 冰川冻土, 2010, 32(4): 666-676.]
[17]
Li Yu, Wang Naiang, Li Zhuolun, et al. The relationships among organic Geochemical proxies and their paleoenvironmental significance in the Zhuyeze sediments[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 334-341. [李育, 王乃昂, 李卓伦, 等. 河西猪野泽沉积物有机地化指标之间的关系及古环境意义[J]. 冰川冻土, 2011, 33(2): 334-341.]
[18]
Minckley T, Whitlock C. Spatial variation of modern pollen in Oregon and southern Washington, USA [J]. Review of Palaeobotany and Palynology, 2000, 112: 97-123.
[19]
Xiao Xiayun, Jiang Qingfeng, Liu Xingqi, et al. High resolution sporopollen record and environmental change since Holocene in the Wulungu Lake, Xinjiang[J]. Acta Micropalaeontologica Sinica, 2006, 23(1): 77-86. [肖霞云, 蒋庆丰, 刘兴起, 等. 新疆乌伦古湖全新世以来高分辨率的孢粉记录与环境变迁[J]. 微体古生物学报, 2006, 23(1): 77-86.]
[20]
Yan Shun, Mu Guijin, Xu Yingqin.Quaternary environmental evolution of the Lop Nur region, China [J]. Acta Geographica Sinica, 1998, 53(4): 332-340. [闫顺, 穆桂金, 许英勤. 新疆罗布泊地区第四纪环境演变[J]. 地理学报, 1998, 53(4): 332-340.]
[21]
Wu Jinglu, Wang Sumin, Wang Hongdao. Characters of the evolution of the climate and environment of Holocene in Aibi Lake Basin in Xinjiang [J]. Oceanologla et Limnologia Sinica, 1996, 27(5): 524-530. [吴敬禄, 王苏民, 王洪道. 新疆艾比湖全新世以来的环境变迁与古气候[J]. 海洋与湖沼, 1996, 27(5): 524-530.]
[22]
An Chengbang, Lu Yanbin, Zhao Jiaju, et al. A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): Implications for central Asia [J]. The Holocene, 2011, 10(1): 1-10.
[23]
Huang Xiaozhong, Chen Fahu, Fan Yuxin,et al. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2009, 194(1-2): 19-27.
[24]
Sun Xiangjun, Du Naiqiu, Wen Chengyu. Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, N.W. China during the last 14000 years [J]. Quaternary Sciences, 1994, (3): 239-247.
[25]
Luo Chuanxiu, Zheng Zhuo, Tarasov P, et al. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China [J]. Review of Palaeobotany and Palynology, 2009, 153(3-4): 282-295.
Yan Shun, Kong Zhaochen, Yang Zhenjin, et al. Seeking relationship between vegetation and Piceapollen in surface soils of Xinjiang, northwestern China [J]. Acta Ecologica Sinica, 2004, 24(9): 2017-2023. [阎顺, 孔昭宸, 杨振京, 等. 新疆表土中云杉花粉与植被的关系[J]. 生态学报, 2004, 24(9): 2017-2023.]
[28]
Zhao Yan, Sun Q F. Reliability of pollen concentration as the indicator of effective moisture in arid and semi-arid regions of China [J]. Journal of Arid Environments, 2010, 74: 423-427.
[29]
Xu Yingqin. The sporo-pollen plant communities in the Holocene in the small Yourdusi Basin, Tianshan Mountains, Xinjiang [J]. Arid Land Geography, 1999, 22(3): 82-88. [许英勤. 新疆天山小尤尔都斯盆地全新世孢粉植物群与环境演变[J]. 干旱区地理, 1999, 22(3): 82-88.]
[30]
Comprehensive Expedition to Xinjiang of Chinese Academy of Sciences, Institute of Botany, Chinese Academy of Sciences. Vegetation and Its Use in Xinjiang [M]. Beijing: Science Press, 1978: 256-257.
[31]
Faegri K, Kaland P E, Krzywinski K. Text Book of Pollen Analysis (4th Edition)[M]. London: John Wiley & Sons Inc, 1989: 1-328.
[32]
Braakter C J F. CANOCO: A FORTRAN Program for Canonical Community Ordination by (Partial) (Detrended) (Canonical) Correspondence Analysis, Principal Components Analysis and Redundancy Analysis Version 2.1[M]. Wageningen: MLV, 1988: 1-95.
[33]
Yang Zhenjing, Kong Zhaochen, Yan Shun, et al. Pollen distribution in topsoil along the Daxigou Valley in the headwaters of the ürümqi River, the Central Tianshan Mountains [J]. Arid Land Geography, 2004, 27(4): 543-547. [杨振京, 孔昭宸, 阎顺, 等. 天山乌鲁木齐河源区大西沟表土花粉散布特征[J]. 干旱区地理, 2004, 27(4): 543-547.]
[34]
Li Wenyi. On dispersal efficiency of Piceapollen [J]. Acta Botanica Sinica, 1991, 33(10): 792-800. [李文漪. 云杉花粉散播效率问题[J]. 植物学报, 1991, 33(10): 792-800.]
[35]
Li Yuecong, Xu Qinhai, Yang Xiaolan, et al. Distribution and source of pollens and spores in surface sediments of Daihai Lake, Inner Mongolia[J]. Journal of Palaeogeography, 2004, 6(3): 316-328. [李月丛, 许清海, 阳小兰, 等. 内蒙古岱海表层沉积物中孢粉的分布及来源[J]. 古地理学报, 2004, 6(3): 316-328.]
[36]
Luo Chuangxiu, Zheng Zhuo, Tarasov P, et al. A potential of pollen-based climate reconstruction using a modern pollen–climate dataset from arid northern and western China [J]. Review of Palaeobotany and Palynology, 2010, 160(3-4): 111-125.
[37]
Li Yiyin, Zhang Xinshi, Zhou Guangsheng, et al.Quantitative relationships between vegetation and several pollen taxa in surface soil from North China [J]. Chinese Science Bulletin, 2000, 45(7): 761-765. [李宜垠, 张新时, 周广胜, 等. 中国北方几种常见表土花粉类型与植被的数量关系[J]. 科学通报, 2000, 45(7):761-765.]
[38]
Xu Qinghai, Li Yuecong, Yang Xiaolan, et al. Study on surface pollen of major steppe communities in northern China [J]. Geographical Research, 2005, 24(3): 394-402. [许清海, 李月丛, 阳小兰, 等. 北方草原区主要群落类型表土花粉分析[J]. 地理研究, 2005, 24(3): 394-402.]
[39]
Shen Caiming, Liu K B, Tang Lingyu,et al. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau[J]. Review of Palaeobotany and Palynology, 2006, 140(1-2): 61-77.
[40]
Herzschuh U, Winter K, W nnemann B, et al. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra [J]. Quaternary International, 2006, 154-155: 113-121.
[41]
Zhao Yan, Yu Zicheng, Chen, Fahu. Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China [J]. Quaternary International, 2009, 194(1-2): 6-18.
[42]
Xu Yinqin, Yan shun, Jia Baoquan,et al. Numerical relationship between the surface spore-pollen and surrounding vegetation on the southern slope of Tianshan Mountains[J]. Arid Land Geography, 1996, 19(3): 24-30. [许英勤, 阎顺, 贾金宝, 等. 天山南坡表土孢粉分析及其与植被的数量关系[J]. 干旱区地理, 1996, 19(3): 24-30.]
[43]
Editorial Committee of Flora of Xinjiang. Flora of Xinjiang, Vol.1 [M].ürümqi: Xinjiang Science and Technology and Hygiene Publishing House, 1992: 234-242.
[44]
Zhang Yun, Kong Zhaochen, Ni Jian, et al. Pollen record and environmental evolution of Caotanhu wetland in Xinjiang since 4550 cal. a BP [J]. Chinese Science Bulletin, 2008,53(7): 1049-1061. [张芸, 孔昭宸, 倪健, 等. 新疆草滩湖村湿地4550年以来的孢粉记录和环境演变[J]. 科学通报, 2008, 53(7): 1049-1061.]