全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

地下水溶质迁移模拟研究进展

DOI: 10.7522/j.issn.1000-0240.2013.0175, PP. 1582-1589

Keywords: 地下水,溶质迁移模型,模拟,地下水污染物

Full-Text   Cite this paper   Add to My Lib

Abstract:

在地下水的相关研究中,农药和石油等地下水污染、土地盐碱化、海水入侵等诸多实际问题主要的研究方法都涉及地下水溶质迁移模拟.相比地下水水流模拟的相对完善,对溶质迁移的模拟比较薄弱且迁移过程本身复杂性较高,目前地下水溶质迁移的研究工作还处在全面发展的阶段.文中阐述了反映地下水溶质迁移机理和过程的数学模型,综述了溶质迁移模拟在地下水污染物防治、土地盐碱化、海水入侵、石油和放射性废物扩散等问题的诸多应用,归类了目前溶质迁移模拟所使用的对流迁移、对流-弥散模拟等主要数值方法,并对这些方法的优缺点和应用实例做了总结.最后,分析了目前溶质迁移模拟中存在的不足,展望了未来在参数确定、裂隙介质运移机理和多相介质条件下运移模拟可能取得的突破.

References

[1]  Zheng Chunmiao, Bennett G D. Applied Contaminant Transport Modeling[M]. Sun Jinyu, Lu Guoping, trans. 2nd ed. Beijing: Higher Education Press, 2009: 1-3.
[2]  Yin Zhenliang, Xiao Honglang, Zou Songbing, et al. Progress of the research on hydrological simulation in the mainstream of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 438-446. [尹振良, 肖洪浪, 邹松兵, 等. 祁连山黑河干流山区水文模拟研究进展[J]. 冰川冻土, 2013, 35(2): 438-446.]
[3]  Hu Xinglin, Xiao Honglang, Lan Yongchao, et al. Experimental study of calculating method of river seepage in middle and upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 460-468. [胡兴林, 肖洪浪, 蓝永超, 等. 黑河中上游段河道渗漏量计算方法的试验研究[J]. 冰川冻土, 2012, 34(2): 460-468.]
[4]  Xi Haiyang, Feng Qi, Si Jianhua, et al. A review of river co-urse leakage in the Ejina Delta in the lower reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1241-1247. [席海洋, 冯起, 司建华, 等. 黑河下游额济纳三角洲河道渗漏对地下水补给研究综述[J]. 冰川冻土, 2012, 34(5): 1241-1247.]
[5]  Liu Weidong, Li Feng, Sun Wei. Impact of Jinchuan tailing pond drainage on groundwater quality: Current situation and prediction[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 114-119. [刘卫东, 李峰, 孙伟. 金川矿区尾矿库排水对地下水水质影响: 现状及预测分析[J]. 冰川冻土, 2012, 34(1): 114-119.]
[6]  Rubin J, James R V. Dispersion-affected transport of reacting solutes in saturated porous media: Galerkin Method applied to equilibrium-controlled exchange in unidirectional steady water flow[J]. Water Resources Research, 1973, 9(5): 1332-1356.
[7]  Rushton K R, Redshaw S C. Seepage and Groundwater Flow: Numerical Analysis by Analogue and Digital Methods[M]. New York: Wiley, 1979: 11-25.
[8]  Cappelaere B R, Podmore T H. Modeling groundwater contamination from land-applied swine waste[J]. Transactions of the American Society of Agricultural Engineers, 1980, 23(5): 1147-1152.
[9]  Chandio B A, Mughal A Q, Chandio S M. Simulation of grou-nd water pollution[J]. Mehran University Research Journal of Engineering and Technology, 1984, 3(2): 1-7.
[10]  McDonald M G, Harbaugh A W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, U.S. Geological Survey Open-File Report 83-875. .
[11]  Pollock D W. Documentation of Computer Programs to Compute and Display Pathlines Using Results from the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, U.S. Geological Survey Open-File Report 89-381. Reston, Virginia: U.S. Geological Survey, 1989.
[12]  Zheng Chunmiao. MT3D: A Modular Three-Dimensional Tr-ansport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems[R/OL].[2012-12-14].
[13]  Mackay R, Riley M S, Williams G M. Simulating groundwater contaminant migration at Villa Farm lagoons[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2001, 34: 215-224.
[14]  Almasri M N, Kaluarachch J J. Modeling nitrate contamination of groundwater in agricultural watersheds[J]. Journal of Hydrology, 2007, 343(3/4): 211-229.
[15]  Datta B, Chakrabarty D, Dhar A. Identification of unknown groundwater pollution sources using classical optimization with linked simulation[J]. Journal of Hydro-environment Resear-ch, 2011, 5(1): 25-36.
[16]  Jamin P, Dolle F, Chisala B, et al. A regional flux-based risk assessment approach for multiple contaminated sites on groundwater bodies[J]. Journal of Contaminant Hydrology, 2012, 127(1/4): 65-75.
[17]  Ghoraba S M, Zyedan B A, Rashwan I M. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt[J]. Alexandria Engineering Journal, 2013, 52(2): 197-207.
[18]  Zhang Wei, Deng Ying'er. Research progress of solute migration[J]. Guangdong Trace Elements Science, 2009, 16(12): 1-7. [张伟, 邓英尔. 溶质迁移研究进展[J]. 广东微量元素科学, 2009, 16(12): 1-7.]
[19]  Bing Hui, Wu Junjie, Deng Jin. Variations of physical and mechanical properties of saline loess before and after desalting[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 796-800. [邴慧, 武俊杰, 邓津. 黄土状盐渍土洗盐前后物理力学性质的变化[J]. 冰川冻土, 2011, 33(4): 796-800.]
[20]  Hou Dianjiong, Qin Xiang, Wu Jinkui, et al. Isotopic, chemical characteristics and transforming relationship between surfacewater and groundwater in the Xiaochangma River basin[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 698-705. [侯典炯, 秦翔, 吴锦奎, 等. 小昌马河流域地表水地下水同位素与水化学特征及转化关系[J]. 冰川冻土, 2012, 34(3): 698-705.]
[21]  Ma Donghao, Wang Quanjiu, Lai Jianbin. Field experimental studies on the effects of water quality and drip rate on soil salt distribution in drip irrigation under film[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(3): 42-46. [马东豪, 王全九, 来剑斌. 膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J]. 农业工程学报, 2005, 21(3): 42-46.]
[22]  Bing Hui, Ma Wei. Experimental study on freezing point of saline soil[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1106-1113. [邴慧, 马巍. 盐渍土冻结温度的试验研究[J]. 冰川冻土, 2011, 33(5): 1106-1113.]
[23]  Wang Weizhen, Wu Yueru, Jin Rui, et al. Analysis of the variation characteristics of soil moisture and soil salinity-Take Arou Pasture in the upper reaches of Heihe River for an example[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 268-274. [王维真, 吴月茹, 晋锐, 等. 冻融期土壤水盐变化特征分析——以黑河上游祁连县阿柔草场为例[J]. 冰川冻土, 2009, 31(2): 268-274.]
[24]  Harvey R W, Metge D W, Barber L B, et al. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer[J]. Water Research, 2010, 44(4): 1062-1071.
[25]  Yakirevich A, Weisbrod N, Kuznetsov M, et al. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: A study of the Alto Piura aquifer, Peru[J]. Journal of Hydrology, 2013, 482: 25-39.
[26]  Jiang Jing, Feng Shaoyuan, Huo Zailin, et al. Application of the SWAP model to simulate water-salt transport under deficit irrigation with saline water[J]. Mathematical and Computer Modeling, 2011, 54(3/4): 902-911.
[27]  George F P, Bredehoeft J D. Application of the digital computer for aquifer evaluation[J]. Water Resources Research, 1986, 4(5): 1069-1093.
[28]  Rapaglia J, Di Sipio E, Bokuniewicz H, et al. Groundwater connections under a barrier beach: A case study in the Venice Lagoon[J]. Continental Shelf Research, 2010, 30(2): 119-126.
[29]  Milnes E. Process-based groundwater salinization risk assessment methodology: Application to the Akrotiri aquifer (Southern Cyprus)[J]. Journal of Hydrology, 2011, 399(1/2): 29-47.
[30]  Kolker A S, Cable J E, Johannesson K H, et al. Pathways and processes associated with the transport of groundwater in deltaic systems[J]. Journal of Hydrology, 2013, 498: 319-334.
[31]  Hsieh P A, Freckleton J R. Documentation of a Computer Program to Simulate Horizontal-Flow Barriers Using the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, U.S. Geological Survey Open File Report 92-477. Reston, Virginia: U.S. Geological Survey, 1993.
[32]  Fischer D, Uchrin C G. A prototype laboratory model to predict TCE contamination of residence basements from polluted groundwater[J]. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering and Toxicology, 1994, 29(8): 1565-1576.
[33]  Li Guoyu, Ma Wei, Li Xingbai, et al. Migration of the petroleum pollutants in permafrost regions: Review and prospect[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 947-952. [李国玉, 马巍, 李兴柏, 等. 多年冻土区石油污染物迁移过程研究回顾与展望[J]. 冰川冻土, 2011, 33(4): 947-952.]
[34]  Yang Sizhong, Jin Huijun, Ji Yanjun, et al. Progress of the studies of migration of oil spilled in frozen ground regions and its clean-up techniques[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 501-507. [杨思忠, 金会军, 吉延峻, 等. 冻土区石油污染物迁移及清除研究进展[J]. 冰川冻土, 2008, 30(3): 501-507.]
[35]  Amos R T, Bekins B A, Delin G N, et al. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes[J]. Journal of Contaminant Hydrology, 2011, 125(1/4): 13-25.
[36]  Chen Jiajun, Wang Jinsheng, Li Helian. Influence on radionuclide migration by nonequilibrium sorption and identification of rate coefficient[J]. China Environmental Science, 2000, 20(1): 73-76. [陈家军, 王金生, 李合莲. 非平衡吸附对核素迁移的影响及平衡速率参数的确定[J]. 中国环境科学, 2000, 20(1): 73-76.]
[37]  Nair R N, Sunny F, Manikandan S T. Modeling of decay chain transport in groundwater from uranium tailings ponds[J]. Applied Mathematical Modeling, 2010, 34(9): 2300-2311.
[38]  Kim Jung-Woo, Baik Min-Hoon, Jung Haeryong, et al. Reactive transport of uranium with bacteria in fractured rock: Model development and sensitivity analysis[J]. Journal of Contaminant Hydrology, 2013, 152: 82-96.
[39]  Mackay D M, Freyberg D L, Roberts P V, et al. A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement[J]. Water Resources Research, 1986, 22(13): 2017-2029.
[40]  Mulligan A E, Ahlfeld D P. Advective control of groundwater contaminant plumes: Model development and comparison to hydraulic control[J]. Water Resources Research, 1999, 35(8): 2285-2294.
[41]  Weaver T R, Bahr J M. Geochemical evolution in the Cambrian-Ordovician sandstone aquifer, eastern Wisconsin: 2. Correlation between flow paths and ground-water chemistry[J]. Groundwater, 1991, 29(4): 510-515.
[42]  Yeh G T. A Lagrangian-Eulerian Method with zoomable hidden fine-mesh approach to solving advection-dispersion equations[J]. Water Resources Research, 1990, 26(6): 1133-1144.
[43]  Labolle E M, Fogg G E, Tompson A B. Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods[J]. Water Resources Research, 1996, 32(3): 583-593.
[44]  Sun Nezheng. A finite cell method for simulating the mass transport process in porous media[J]. Water Resources Research, 1999, 35(12): 3649-3662.
[45]  Healy R W, Russell T F. Efficient implementation of the modified method of characteristics in finite-difference model of solute transport[C/OL]//Solving Ground Water Problems with Models: Proceedings of the Fourth International Conference on the Use of Models to Analyze and Find Working Solutions to Ground Water Problems.[2012-12-14].
[46]  El-Kadi A I. Applying the USGS mass-transport model (MOC) to remedial actions by recovery wells[J]. Groundwater, 1988, 26(3): 281-288.
[47]  Healy R W, Russell T F. A finite-volume Eulerian-Lagrangian localized adjoins method for solution of the advection-dispersion equation[J]. Water Resources Research, 1993, 29(7): 2399-2413.
[48]  Deutsch C V, Journel A G. Geostatistical Software Library and User's Guide[M]. 2nd ed. New York: Oxford University Press, 1998: 21-23.
[49]  Gelhar L W, Welty C, Rehfeldt K W. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7): 1955-1974.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133