全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

寒区典型下垫面冻土水热过程对比研究(Ⅰ):模型对比

DOI: 10.7522/j.issn.1000-0240.2013.0171, PP. 1545-1554

Keywords: 寒区,冻土水文,SHAW,CoupModel,土壤温湿

Full-Text   Cite this paper   Add to My Lib

Abstract:

冻土水热传输和水热耦合过程是寒区水循环的核心环节和重要组成部分,土壤温度和湿度(含水量)的观测和模拟是冻土水热过程分析的基础.以中国科学院寒区旱区环境与工程研究所黑河上游生态-水文试验研究站葫芦沟试验小流域为依托,选取季节冻土区的高寒草原、高寒草甸和多年冻土区的沼泽化草甸、高山寒漠等4种典型寒区下垫面,分别布设自动气象站,并调查相关土壤和植被参数,利用SHAW和CoupModel模型对试验点的土壤水热条件进行模拟计算.结果表明4个试验点多层土壤含水量和地温SHAW模型计算值与实测值对比平均相关系数R2分别为0.65和0.90;CoupModel模型计算值与实测值对比平均R2为0.72和0.93.总体上,地温的模型估算结果略好于含水量;相对于SHAW模型,CoupModel模型是更适合寒区各种下垫面的一维SVATs模型.

References

[1]  Bates B, Kundzewicz Z W, Wu Shaohong, et al. Climate Change and Water: IPCC Technical Paper VI[M]. Geneva, Switzerland: IPCC Secretariat, 2008.
[2]  Woo Ming-ko, Rouse W R, Stewart R E, et al. Chapter 1, The Mackenzie GEWEX study: A contribution to cold region atmospheric and hydrologic sciences[M][C]//Cold Region Atmospheric and Hydrologic Studies, the Mackenzie GEWEX Experience: Volume 1, Atmospheric Dynamics. Berlin: Springer, 2008: 1-22.
[3]  Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000: 1-10.
[4]  Yang Yong, Chen Rensheng, Ji Xibin, et al. Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China[J]. Advances in Water Science, 2010, 21(1): 30-35. [阳勇, 陈仁升, 吉喜斌, 等. 黑河高山草甸冻土带水热传输过程[J]. 水科学进展, 2010, 21(1): 30-35.]
[5]  Cheng Guodong, Zhou Youwu. State of the art and prospect of geocryology in China[J]. Journal of Glaciology and Geocryology, 1988, 10(3): 221-227. [程国栋, 周幼吾. 中国冻土学的现状和展望[J]. 冰川冻土, 1988, 10(3): 221-227.]
[6]  Pavlov A V. Current change of climate and permafrost in the arctic and sub-arctic of Russia[J]. Permafrost and Periglacial Processes, 1994, 5(2): 101-110.
[7]  Wang Xuejia, Yang Meixue, Wan Guoning. Processes of soil thawing-freezing and features of ground temperature and moisture at D105 on the northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 56-63. [王学佳, 杨梅学, 万国宁. 藏北高原D105点土壤冻融状况与温湿特征分析[J]. 冰川冻土, 2012, 34(1): 56-63.]
[8]  Xiao Yao, Zhao Lin, Li Ren, et al. Seasonal variation characteristics of surface energy budget components in permafrost regions of northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1033-1039. [肖瑶, 赵林, 李韧, 等. 青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J]. 冰川冻土, 2011, 33(5): 1033-1039.]
[9]  Li Ren, Zhao Lin, Ding Yongjian, et al. The climatic characteristics of the maximum seasonal frozen depth in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(6): 1050-1056. [李韧, 赵林, 丁永建, 等. 青藏高原季节冻土的气候学特征[J]. 冰川冻土, 2009, 31(6): 1050-1056.]
[10]  Chen Xiaolei, Yang Meixue, Wan Guoning, et al. Simulation studies of CLM3 and SHAW at NMQ Station on the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 291-300. [陈晓磊, 杨梅学, 万国宁, 等. CLM3和SHAW模式在青藏高原中部NMQ站的模拟研究[J]. 冰川冻土, 2013, 35(2): 291-300.]
[11]  Zhang Yanlin, Cheng Guodong, Li Xin, et al. A sensitivity analysis of effect of solar radiation on heat and water process in mountainous regions—A case study in the upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 650-659. [张艳林, 程国栋, 李新, 等. 山区太阳辐射对水热过程影响的敏感性分析[J]. 冰川冻土, 2012, 34(3): 650-659.]
[12]  Zhang Wei, Wang Genxu, Zhou Jian, et al. Simulating the water-heat process in permafrost regions in the Tibetan Plateau based on CoupModel[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1099-1109. [张伟, 王根绪, 周剑, 等. 基于CoupModel的青藏高原多年冻土区土壤水热过程模拟[J]. 冰川冻土, 2012, 34(5): 1099-1109.]
[13]  Zhao Lin, Li Ren, Ding Yongjian. Simulation on the soil water-thermal characteristics of the active layer in Tanggula Range[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 930-937. [赵林, 李韧, 丁永建. 唐古拉地区活动层土壤水热特征的模拟研究[J]. 冰川冻土, 2008, 30(6): 930-937.]
[14]  Spence C, Burke A. Estimates of Canadian Arctic Archipelago runoff from observed hydrometric data[J]. Journal of Hydrology, 2008, 362(3/4): 247-259.
[15]  Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I: Theory and development[J]. Transactions of the American Society of Agricultural Engineers, 1989, 32: 565-571.
[16]  Jansson P E, Moon D S. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J]. Environmental Modeling & Software, 2001, 16: 37-46.
[17]  Kennedy I, Sharratt B. Model comparisons to simulate soil frost depth[J]. Soil Science, 1998, 163(8): 623-645.
[18]  Zhou Jian, Wang Genxu, Li Xin, et al. Energy-water balance of meadow ecosystem in cold frozen soil areas[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 398-407. [周剑, 王根绪, 李新, 等. 高寒冻土地区草甸草地生态系统的能量-水分平衡分析[J]. 冰川冻土, 2008, 30(3): 398-407.]
[19]  Guo Donglin, Yang Meixue. Simulation of soil temperature and moisture in seasonally frozen ground of central Tibetan Plateau by SHAW model[J]. Plateau Meteorology, 2010, 29(6): 1369-1377. [郭东林, 杨梅学. SHAW模式对青藏高原中部季节冻土区土壤温、 湿度的模拟[J]. 高原气象, 2010, 29(6): 1369-1377.]
[20]  Yin Z F, Ouyang H, Chen H. Simulating soil freezing and thawing of temperate desert ecosystem on the Qinghai-Tibet Plateau[J]. Procedia Environmental Sciences, 2010, 2: 476-485.
[21]  Zhang Yinsheng, Ohata T, Zhou J, et al. Modelling plant canopy effects on annual variability of evapotranspiration and heat fluxes for a semi-arid grassland on the southern periphery of the Eurasian cryosphere in Mongolia[J]. Hydrological Process, 2011, 25(8): 1201-1211.
[22]  Zhao Jun. Application of COUPMODEL in the research of soil water and heat process[J]. System Science and Comprehensive Studies in Agriculture, 2001, 17(4): 250-252. [赵军. COUPMODEL模拟土壤水热变化过程的研究[J]. 农业系统科学与综合研究, 2001, 17(4): 250-252.]
[23]  Wei Sanping, Wang Li, Wu Faqi. Water transfer simulation in SVAT system of farm land and forestland in the loess hilly region[J]. Agricultural Research in the Arid Areas, 2008, 26(4): 17-22. [卫三平, 王力, 吴发启. 黄土丘陵区农林地SVAT系统水分传输模拟研究[J]. 干旱地区农业研究, 2008, 26(4): 17-22.]
[24]  Hollesen J, Elberling B, Hansen B U. Modelling subsurface temperatures in a heat producing coal waste rock pile, Svalbard (78°N)[J]. Cold Regions Science and Technology, 2009, 58(1/2): 68-76.
[25]  Scherler M, Hauck C, Hoelzle M, et al. Meltwater infiltration into the frozen active layer at an alpine permafrost site[J]. Permafrost and Periglacial Processes, 2010, 21(4): 325-334.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133