全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

多年冻土南界附近青藏铁路路基下的冻土退化

DOI: 10.7522/j.issn.1000-0240.2014.0092, PP. 767-771

Keywords: 青藏铁路,路基,多年冻土,冻土退化

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29m,下降速率为4cm·a-1;路基下10m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41m,下降速率为6cm·a-1;路基下10m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50m,抬升速率为7cm·a-1;多年冻土厚度减少0.90m,减少速率为13cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.

References

[1]  Ma Wei, Wu Qingbai, Cheng Guodong. Analyses of the temperature fields within an air convective embankment of crushed rock structure along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2006, 28(4): 586-595. [马巍, 吴青柏, 程国栋. 青藏铁路块石气冷结构路堤下冻土温度场变化分析[J]. 冰川冻土, 2006, 28(4): 586-595.]
[2]  Cheng Guodong. Construction of Qinghai-Tibet Railway with co-oled roadbed[J]. China Railway Science, 2003, 24(3): 1-4. [程国栋. 用冷却路基的方法修建青藏铁路[J]. 中国铁道科学, 2003, 24(3): 1-4.]
[3]  Cheng Guodong, Wu Qingbai, Ma Wei. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway[J]. Science in China (Series E: Technological Sciences), 2009, 52(2): 530-538. [程国栋, 吴青柏, 马巍. 青藏铁路主动冷却路基的工程效果[J]. 中国科学(E辑: 技术科学), 2009, 39(1): 16-22.]
[4]  Wu Qingbai, Liu Yongzhi, Yu Hui. Analysis of the variations of permafrost under ordinary embankment along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 960-968. [吴青柏, 刘永智, 于晖. 青藏铁路普通路基下部冻土变化分析[J]. 冰川冻土, 2007, 29(6): 960-968.]
[5]  Yu Hui, Wu Qingbai, Zhang Jianming. Dynamic assessment of permafrost under ordinary embankment of Qinghai-Xizang Railway[J]. Journal of Engineering Geology, 2009, 17(1): 94-99. [于晖, 吴青柏, 张建明. 青藏铁路普通路基下冻土过程动态评价[J]. 工程地质学报, 2009, 17(1): 94-99.]
[6]  Wu Qingbai, Zhang Tingjun, Liu Yongzhi. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012, 6: 607-612.
[7]  Su Kai, Zhang Jianming, Liu Shiwei, et al. Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375. [苏凯, 张建明, 刘世伟, 等. 高温高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375.]
[8]  Yu Qihao, Wen Zhi, Ding Yansheng, et al. Monitoring the tower foundations in the permafrost regions along the Qinghai-Tibet DC Transmission Line from Qinghai Province to Tibetan Autonomous Region[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1165-1172. [俞祁浩, 温智, 丁燕生, 等. 青藏直流线路冻土路基监测研究[J]. 冰川冻土, 2012, 34(5): 1165-1172.]
[9]  Huang Zhijun, Lai Yuanming, Li Shuangyang, et al. Dynamic response of embankment in permafrost regions under traffic load[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 418-426. [黄志军, 赖远明, 李双洋, 等. 交通荷载作用下冻土路基动力响应分析[J]. 冰川冻土, 2012, 34(2): 418-426.]
[10]  Liu Shiwei, Zhang Jianming. Review on physic-mechanical pr-operties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129. [刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129.]
[11]  Ma Wei, Mu Yanhu, Wu Qingbai, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2011, 67: 178-186.
[12]  Li Yong, Han Longwu, Xu Guoqi. Research on stability of embankment in permafrost regions along Qinghai-Tibet Railway and its control[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 880-883. [李勇, 韩龙武, 许国琪. 青藏铁路多年冻土路基稳定性及防治措施研究[J]. 冰川冻土, 2011, 33(4): 880-883.]
[13]  Sun Yongning, Wang Jinchang, Cheng Jia, et al. Study on the stability of the subgrade engineering in permafrost area along Qinghai-Tibet Railway[J]. Journal of Lanzhou Jiaotong University, 2011, 30(3): 28-31. [孙永宁, 王进昌, 程佳, 等. 青藏铁路多年冻土区路基工程稳定性评价[J]. 兰州交通大学学报, 2011, 30(3): 28-31.]
[14]  An Guodong, Mi Long, Zhu Benzhen, et al. Study and application of long-term monitoring system for permafrost area along Qinghai-Tibet Railway[J]. Journal of Railway Engineering Society, 2010(3): 1-6. [安国栋, 米隆, 朱本珍, 等. 青藏铁路多年冻土区长期监测系统的研究与应用[J]. 铁道工程学报, 2010(3): 1-6.]
[15]  Wang Pengling, Tang Guoli, Cao Lijuan, et al. Surface air temperature variability and its relationship with altitude and latitude over the Tibetan Plateau in 1981-2010[J]. Advances in Climate Change Research, 2012, 8(5): 313-319. [王朋岭, 唐国利, 曹丽娟, 等. 1981-2010年青藏高原地区气温变化与高程及纬度的关系[J]. 气候变化研究进展, 2012, 8(5): 313-319.]
[16]  Wu Qingbai, Niu Fujun. Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2013, 58(10): 1079-1094. [吴青柏, 牛富俊. 青藏高原多年冻土变化与工程稳定性[J]. 科学通报, 2013, 58(2): 115-130.]
[17]  Zhu Zhaorong, Li Yong, Xue Chunxiao, et al. Changing tendency of precipitation in permafrost regions along Qinghai-Tibet Railway during last thirty years[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 846-850. [朱兆荣, 李勇, 薛春晓, 等. 1976-2010年青藏铁路沿线多年冻土区降水变化特征[J]. 冰川冻土, 2011, 33(4): 846-850.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133