全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

周期温度边界条件下一维融化固结特性研究

DOI: 10.7522/j.issn.1000-0240.2014.0107, PP. 895-901

Keywords: 周期温度边界,融化固结行为,数值方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在周期温度边界条件下,冻土呈现出与常温边界不同的融化固结特性.基于融化固结理论提出了一种适用于周期温度边界条件下融化固结计算的数值模拟方法,并通过试验验证了该方法的有效性.通过对比分析试验及数值结果表明,提出的数值方法能够很好地描述周期温度边界条件下冻土的融化固结特性.同时,融化深度和变形均随时间呈现出阶梯型的变化趋势.这是周期温度边界下土体融化固结行为最显著的特点.随着冻融次数的增加,融化深度和变形均趋近于常温边界条件下的结果,这表明若干个冻融循环后周期温度边界对融化固结行为的影响将逐渐消失.

References

[1]  Cheng Guodong, Yang Chengsong. Mechanics related with frozen ground in construction of Qinghai-Tibet Railway[J]. Mechanics and Engineering, 2006, 28(3): 1-8. [程国栋, 杨成松. 青藏铁路建设中的冻土力学问题[J]. 力学与实践, 2006, 28(3): 1-8.]
[2]  Qi Jilin, Sheng Yu, Zhang Jianming, et al. Settlement of embankments in permafrost regions in the Qinghai-Tibet Plateau[J]. Norwegian Journal of Geography, 2007, 61: 49-55.
[3]  Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area change of the frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 1-8. [王澄海, 靳双龙, 施红霞. 未来50 a中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1): 1-8.]
[4]  Hong Tao, Liang Sihai, Sun Yu, et al. Analyzing the factors that impact on the heat conductivity coefficient and applying them to simulate the depth of permafrost active layer in the headwaters of the Yellow River[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 824-833. [洪涛, 梁四海, 孙禹, 等. 黄河源区多年冻土热传导系数影响因素分析及其在活动层厚度模拟中的应用[J]. 冰川冻土, 2013, 35(4): 824-833.]
[5]  Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of frozen ground to climate change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1436-1445. [杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6): 1436-1445.]
[6]  Wu Qingbai, Liu Yongzhi, Zhang Jianming. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Processes, 2002, 13(3): 199-205.
[7]  Wu Qingbai, Liu Yongzhi, Zhang Tingjun, et al. Analysis of cooling effect of crushed rock-based embankment of the Qinghai-Xizang Railway[J]. Cold Regions Science and Technology, 2008, 53(3): 271-282.
[8]  Wang Guoshang, Yu Qihao, Guo Lei, et al. Prevention and control of freezing and thawing disasters in electric transmission lines constructed in permafrost regions[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 137-143. [王国尚, 俞祁浩, 郭磊, 等. 多年冻土区输电线路冻融灾害防控研究[J]. 冰川冻土, 2014, 36(1): 137-143.]
[9]  Zhang Shuliang, Gao Feng, Ning Baoying, et al. Analysis on the construction practices of transmission projects in permafrost regions in Canada and the United States[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 201-207. [张树良, 高峰, 宁宝英, 等. 加拿大、 美国多年冻土地区输电工程建设经验浅析[J]. 冰川冻土, 2013, 35(1): 201-207.]
[10]  Zhang Lianhai, Ma Wei, Yang Chengsong, et al. A review and prospect of the thermodynamics of soils subjected to freezing and thawing[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1505-1518. [张莲海, 马巍, 杨成松, 等. 土在冻结及融化过程中的热力学研究现状与展望[J]. 冰川冻土, 2013, 35(6): 1505-1518.]
[11]  Morgenstern N R, Nixon J F. One dimensional consolidation of thawing soils[J]. Canadian Geotechnical Journal, 1971, 8(4): 558-565.
[12]  Nixon J F, Morgenstern N R. Practical extensions to a theory of consolidation for thawing soils[C]//Proceedings of 2nd International Conference on Permafrost: North American Contribution. Washington, DC: National Academy of Sciences, 1973: 369-377.
[13]  Sykes J F, Lennox W C, Charlwood R G. Finite element permafrost thaw settlement model[J]. Journal of the Geotechnical Engineering Division: Proceedings of the American Society of Civil Engineers, 1974, 100(GT11): 1185-1201.
[14]  Sykes J F, Lennox W C, Unny T E. Two-dimensional heated pipeline in permafrost[J]. Journal of the Geotechnical Engineering Division: Proceedings of the American Society of Civil Engineers, 1974, 100(GT11): 1203-1215.
[15]  Xie Kanghe, Leo C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays[J]. Computers and Geotechnics, 2004, 31: 301-314.
[16]  Liu Zuoqiu, Zhou Cuiying. One-dimensional non-linear large deformation consolidation analysis of soft clay foundation by FDM[J]. Acta Science Arum Naturalium Universitatis Sunyatseni, 2005, 44(3): 25-41. [刘祚秋, 周翠英. 软粘土地基非线性一维大变形固结的有限差分法分析[J]. 中山大学学报, 2005, 44(3): 25-41.]
[17]  Foriero A, Ladanyi B. FEM assessment of large-strain thaw consolidation[J]. Journal of Geotechnical Engineering, 1995, 121(2): 126-138.
[18]  Yao Xiaoliang, Qi Jilin, Wu Wei. Three dimensional analysis of large strain thaw consolidation in permafrost[J]. Acta Geotechnica, 2012, 7(3): 193-202.
[19]  Liu Yongzhi, Wu Qingbai, Zhang Jianming, et al. Deformation of highway roadbed on permafrost regions of the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 10-15. [刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24(1): 10-15.]
[20]  Qi Jilin, Yao Xiaoliang, Yu Fan, et al. Study on thaw consolidation of permafrost under roadway embankment[J]. Cold Regions Science and Technology, 2012, 81: 48-54.
[21]  Qi Jilin, Yao Xiaoliang, Yu Fan. Consolidation of thawing permafrost considering phase change[J]. KSCE Journal of Civil Engineering, 2013, 17(6): 1293-1301.
[22]  Li Xin, Cheng Guodong. A GIS-aided response model of high altitude permafrost to global change[J]. Science in China (Series D), 1999, 29(2): 185-192.
[23]  Cheng Guodong. The impact of local factors on permafrost distribution and its inspiring for design Qinghai-Xizang Railway[J]. Science in China (Series D), 2003, 33(6): 602-607.
[24]  Zhu Linnan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 8-14. [朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1): 8-14.]
[25]  Xu Xuezu, Wang Jiacheng, Zhang Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2001. [徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133