Niu Fujun, Ma Wei, Wu Qingbai. Thermal stability of roadbeds of the Qinghai-Tibet Railway in permafrost regions and the main freezing-thawing hazards[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 196-206. [牛富俊, 马巍, 吴青柏. 青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J]. 地球科学与环境学报, 2011, 33(2): 196-206.]
[2]
Mu Yanhu. Analyses on Dynamic Variations of Embankment Thermal Regime and Deformation Along the Qinghai-Tibet Railway in Permafrost Regions[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2012. [穆彦虎. 青藏铁路冻土区路基温度和变形动态变化过程研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2012.]
[3]
Wu Qingbai, Tong Changjiang. Permafrost change and stability of Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 1995, 17(4): 350-355. [吴青柏, 童长江. 冻土变化与青藏公路的稳定性问题[J]. 冰川冻土, 1995, 17(4): 350-355.]
[4]
Wang Guoshang, Yu Qihao, Guo Lei, et al. Prevention and co-ntrol of freezing and thawing disasters in electric transmission lines constructed in permafrost regions[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 137-143. [王国尚, 俞祁浩, 郭磊, 等. 多年冻土区输电线路冻融灾害防控研究[J]. 冰川冻土, 2014, 36(1): 137-143.]
[5]
Su Kai. Stability Evaluation for the Foundation of DC 400 kV Transmission Line in Permafrost Regions on the Qinghai-Tibetan Plateau[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2013. [苏凯. 青藏直流±400 kV输变线路多年冻土区塔基稳定性评价[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2013.]
[6]
Nelson F E, Anisimov O A, Shiklomanov N I. Climate change and hazard zonation in the circum-Arctic permafrost regions[J]. Natural Hazards, 2002, 26: 203-225.
[7]
Anisimov O, Reneva S. Permafrost and changing climate: The Russian perspective[J]. Royal Swedish Academy of Science, 2006, 35(4): 169-705.
[8]
Harris C, Davies M C R, Etzelmüller B. The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate[J]. Permafrost and Periglacial Processes, 2001, 12: 145-156.
[9]
Zhang Zhongqiong, Wu Qingbai. Thermal hazards zonation and permafrost change over the Qinghai-Tibet Plateau[J]. Natural Hazards, 2012, 61(2): 403-423.
[10]
Qiu Guoqing, Liu Jingren, Liu Hongxu, et al. Geocryological Glossary[M]. Lanzhou: Gansu Science and Technology Press, 1994. [邱国庆, 刘经仁, 刘鸿绪, 等. 冻土学辞典[M]. 兰州: 甘肃科学技术出版社, 1994.]
[11]
Wu Qingbai, Dong Xianfu, Liu Yongzhi. Response of permafrost to climate change and engineering activity along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 50-55. [吴青柏, 董献付, 刘永智. 青藏公路沿线多年冻土对气候变化和工程影响的响应分析[J]. 冰川冻土, 2005, 27(1): 50-55.]
[12]
Zhang Jianming. Study on Roadbed Stability in Permafrost Regions on Qinghai-Tibetan Plateau and Classification of Permafrost in Highway Engineering[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2004. [张建明. 青藏高原冻土路基稳定性及公路工程多年冻土分类研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2004.]
[13]
Tong Boliang, Li Shude, Bu Jueying, et al. Principle and method of compilation of permafrost map (1:600 000) along Qinghai-Xizang (Tibet) Highway[C]//Proceedings of 2nd National Conference on Permafrost. Lanzhou: Gansu People's Publishing House, 1983: 75-80. [童伯良, 李树德, 卜觉英, 等. 青藏公路沿线多年冻土图(1:60万)编制原则与方法[C]//第二届全国冻土学术会议论文选集. 兰州: 甘肃人民出版社, 1983: 75-80.]
[14]
Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate change[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511. [张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511.]
[15]
Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076. [沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068-1076.]
[16]
National Climate Center of China. Instructions for China Regional Climate Change Projection Data Set (Version 1.0)[M]. Beijing: [s.n.], 2008. [国家气候中心. 中国地区气候变化预估数据集(Version 1.0)使用说明[M]. 北京: [出版者不详], 2008.]
[17]
Zhang Wei, Zhou Jian, Wang Genxu, et al. Monitoring and modeling the influence of snow cover and organic soil on the active layer of permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 528-540. [张伟, 周剑, 王根绪, 等. 积雪和有机质土对青藏高原冻土活动层的影响[J]. 冰川冻土, 2013, 35(3): 528-540.]
[18]
Pang Qiangqiang. Active Layer Thickness Changes in Permafrost Regions on the Qinghai-Tibet Plateau[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2009. [庞强强. 青藏高原多年冻土活动层厚度变化研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2009.]
[19]
Nelson F E, Outcalt S I. A computational method for prediction and regionalization of permafrost[J]. Arctic and Alpine Research, 1987, 19(3): 279-288.
[20]
Nan Zhuotong, Li Shuxun, Cheng Guodong, et al. Surface frost number model and its application to the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 89-95. [南卓铜, 李述训, 程国栋, 等. 地面冻结数模型及其在青藏高原的应用[J]. 冰川冻土, 2012, 34(1): 89-95.]