全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

多年冻土区活动层土壤水分对不同高寒生态系统的响应

DOI: 10.7522/j.issn.1000-0240.2014.0121, PP. 1002-1010

Keywords: 多年冻土,高寒生态系统,土壤水分

Full-Text   Cite this paper   Add to My Lib

Abstract:

土地覆被变化对土壤水分的影响是生态水文学和流域水文学研究的关键问题,基于长江源典型多年冻土区不同高寒草地土壤水分的观测,结合降水、生物量(包括地上和地下)和土壤理化性质,研究了活动层土壤水分变化对不同高寒生态系统的响应.结果表明高寒草甸生物量、土壤养分含量均比高寒草原高,且对降水响应更为强烈,致使高寒草甸土壤水分变异性弱于高寒草原.在土壤完全融化阶段,高寒草甸土壤活动层存在一个低含水层(50cm左右)和两个相对高含水层(20cm和120cm),但高寒草原土壤水分在活动层剖面上有随深度逐渐增大的一致性趋势;在秋季冻结过程中,高寒草甸土冻结起始日滞后于高寒草原土3~15d;在春季融化阶段,高寒草原土更高的含冰量需要更多的融化潜热.此外,表层土壤中(0~20cm),高寒草甸土比高寒草原土有更大的持水特性,而在活动层中下部则呈现完全相反的结果,不同高寒生态系统的演替改变了土壤的水热迁移过程.

References

[1]  Liu Xiaodong, Dong Buwen. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution[J]. Chinese Science Bulletin, 2013, 58(34): 4277-4291. [刘晓东, Dong Buwen. 青藏高原隆升对亚洲季风-干旱环境演化的影响[J]. 科学通报, 2013, 58(28/29): 2906-2919.]
[2]  Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. [周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.]
[3]  Wu Qingbai, Niu Fujun. Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2013, 58(10): 1079-1094. [吴青柏, 牛富俊. 青藏高原多年冻土变化与工程稳定性[J]. 科学通报, 2013, 58(2): 115-130.]
[4]  Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). doi:10.1029/2006JF000631.
[5]  Wu Jichun, Sheng Yu, Wu Qingbai, et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Science in China (Series D: Earth Sciences), 2010, 53(1): 150-158. [吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式[J]. 中国科学(D辑: 地球科学), 2009, 39(11): 1570-1578.]
[6]  Wang Guoshang, Yu Qihao, Guo Lei, et al. Prevention and co-ntrol of freezing and thawing disasters in electric transmission lines constructed in permafrost regions[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 137-143. [王国尚, 俞祁浩, 郭磊, 等. 多年冻土区输电线路冻融灾害防控研究[J]. 冰川冻土, 2014, 36(1): 137-143.]
[7]  Luo Dongliang, Jin Huijun, Lin Lin, et al. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 538-546. [罗栋梁, 金会军, 林琳, 等. 青海高原中、 东部多年冻土及寒区环境退化[J]. 冰川冻土, 2012, 34(3): 538-546.]
[8]  Wang Genxu, Bai Wei, Li Na, et al. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China[J]. Climatic Change, 2011, 106: 463-482.
[9]  Chanpin F S III, Sturm M, Serreze M C, et al. Role of land-surface changes in Arctic summer warming[J]. Science, 2005, 310: 657-660.
[10]  Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China (Series D: Earth Sciences), 2006, 49(11): 1156-1169. [王根绪, 李元寿, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学(D辑: 地球科学), 2006, 36(8): 743-754.]
[11]  Wang Genxu, Li Yuanshou, Wang Yibo, et al. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China[J]. Geoderma, 2008, 143: 143-152.
[12]  Penna D, Brocca L, Borga M, et al. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and drying periods[J]. Journal of Hydrology, 2013, 477: 55-71.
[13]  Li Yuanshou, Wang Genxu, Ding Yongjian, et al. Spatial heterogeneity of soil moisture in alpine meadow area of the Qinghai-Xizang Plateau[J]. Advance in Water Science, 2008, 19(1): 61-67. [李元寿, 王根绪, 丁永建, 等. 青藏高原高寒草甸区土壤水分的空间异质性[J]. 水科学进展, 2008, 19(1): 61-67.]
[14]  Li Haidong, Shen Weishou, Zou Changxin, et al. Spatio-temporal variability of soil moisture and its effect on vegetation in a desertified aeolian riparian ecotone on the Tibetan Plateau, China[J]. Journal of Hydrology, 2013, 479: 215-225.
[15]  Wang Genxu, Liu Guangsheng, Li Chunjie. Effect of changes in alpine grassland vegetation cover on hillslope hydrological process in a permafrost watershed[J]. Journal of Hydrology, 2012, 444/445: 22-33.
[16]  Wen Jing, Wang Yibo, Gao Zeyong, et al. Soil hydrological characteristics of the degrading meadow in permafrost regions in the Beiluhe River basin[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 929-937. [文晶, 王一博, 高泽永, 等. 北麓河流域多年冻土区退化草甸的土壤水分特征分析[J]. 冰川冻土, 2013, 35(4): 929-937.]
[17]  Wu Qingbai, Zhang Tingjun. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13). doi:10.1029/2007JD009539.
[18]  Li Ren, Zhao Lin, Ding Yongjian, et al. The features of each components in the surface heat balance equation over Wudaoliang Northern Tibetan Plateau[J]. Journal of Mountain Science, 2007, 25(6): 664-670. [李韧, 赵林, 丁永建, 等. 青藏高原北部五道梁地表热量平衡方程中各分量特征[J]. 山地学报, 2007, 25(6): 664-670.]
[19]  Yang Jianping, Ding Yongjian, Liu Junfeng. Distribution of snow cover and its inter-decadal variation in the source regions of the Yangtze and Yellow Rivers[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 648-655. [杨建平, 丁永建, 刘俊峰. 长江黄河源区积雪空间分布与年代际变化[J]. 冰川冻土, 2006, 28(5): 648-655.]
[20]  Liu Guangsong, Jiang Nenghui, Zhang Liandi, et al. Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network: Soil Physical and Chemical Analysis & Description of Soil Profiles[M]. Beijing: Standards Press of China, 1997. [刘光菘, 蒋能惠, 张连第, 等. 中国生态系统研究网络观测与分析标准方法: 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1997.]
[21]  Liu Guangsheng, Wang Genxu, Hu Hongchang, et al. Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of the Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 89-95. [刘光生, 王根绪, 胡宏昌, 等. 青藏高原多年冻土区植被盖度变化对活动层水热过程的影响[J]. 冰川冻土, 2009, 31(1): 89-95.]
[22]  Hu Hongchang, Wang Genxu, Wang Yibo, et al. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009, 54(7): 1225-1233. [胡宏昌, 王根绪, 王一博, 等. 江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J]. 科学通报, 2009, 54(2): 242-250.]
[23]  Li Chunjie, Ren Dongxing, Wang Genxu, et al. Analysis of artificial precipitation interception over two meadow species on Qinghai-Tibet Plateau[J]. Advance in Water Science, 2009, 20(6): 769-774. [李春杰, 任东兴, 王根绪, 等. 青藏高原两种草甸类型人工降雨截留特征分析[J]. 水科学进展, 2009, 20(6): 769-774.]
[24]  Sun Xiangyang, Chen Jinlin, Cui Xiaoyang. Soil Science[M]. Beijing: China Forestry Publishing House, 2005. [孙向阳, 陈金林, 崔晓阳. 土壤学[M]. 北京: 中国林业出版社, 2005: 245-269.]
[25]  Wang Genxu, Cheng Guodong, Shen Yongping, et al. Research on Ecological Environment Change in Yangtze-Yellow Rivers Source Regions and Their Integrated Protection[M]. Lanzhou: Lanzhou University Press, 2001. [王根绪, 程国栋, 沈永平, 等. 江河源区的生态环境变化及其综合保护研究[M]. 兰州: 兰州大学出版社, 2001.]
[26]  Zhao Xinquan, Cao Guangmin, Li Yingnian, et al. Alpine Meadow Ecosystem and Global Change[M]. Beijing: Science Press, 2009. [赵新全, 曹广民, 李英年, 等. 高寒草甸生态系统与全球变化[M]. 北京: 科学出版社, 2009.]
[27]  Cai Xiaobu, Peng Yuelin, Yu Baozheng. Soil aggregates organic change and its influence in Tibetan alpine steppe[J]. Transaction of the Chinese Society of Agricultural Engineering, 2013, 29(11): 92-99. [蔡晓布, 彭岳林, 于宝政. 西藏高寒草原土壤团聚体有机碳变化及其影响因素分析[J]. 农业工程学报, 2013, 29(11): 92-99.]
[28]  Zeng C, Zhang F, Wang Q J, et al. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2013, 478: 148-156.
[29]  Zhang Wei, Zhou Jian, Wang Genxu, et al. Monitoring and modeling the influence of snow cover and organic soil on the active layer of permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 528-540. [张伟, 周剑, 王根绪, 等. 积雪和有机质土对青藏高原冻土活动层的影响[J]. 冰川冻土, 2013, 35(3): 528-540.]
[30]  Wang Genxu, Mao Tianxu, Chang Juan, et al. Impacts of surface soil organic content on the soil thermal dynamics of alpine meadows in permafrost regions: data from field observation[J]. Geoderma, 2014, 232/233/234: 414-425.
[31]  Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Relationship between soil properties in permafrost active layer and surface vegetation in Xidatan on the Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 565-573. [岳广阳, 赵林, 赵拥华. 青藏高原西大滩多年冻土活动层土壤性状与地表植被的关系[J]. 冰川冻土, 2013, 35(3): 565-573.]
[32]  Jiao Yongliang, Li Ren, Zhao Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 237-247. [焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2): 237-247.]
[33]  Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 250-255. [吴青柏, 沈永平, 施斌. 青藏高原冻土及土壤水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.]
[34]  Yang Zhaoping, Ouyang Hua, Xu Xingliang, et al. Spatial heterogeneity of soil moisture and vegetation coverage of alpine grassland in permafrost area of the Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2010, 25(3): 426-434. [杨兆平, 欧阳华, 徐兴良, 等. 五道梁高寒草原土壤水分和植被盖度空间异质性的地统计分析[J]. 自然资源学报, 2010, 25(3): 426-434.]
[35]  A Lamusa, Jiang Deming, Luo Yongming. Review on study pro-cess of hydraulic lift in plant roots[J]. Arid Zone Research, 2008, 25(2): 236-241. [阿拉木萨, 蒋德明, 骆永明. 植物根系水力提升作用研究进展综述[J]. 干旱区研究, 2008, 25(2): 236-241.]
[36]  Xiao Yao, Zhao Lin, Li Ren, et al. The characteristics of surface albedo in permafrost regions of northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 480-488. [肖瑶, 赵林, 李韧, 等. 藏北高原多年冻土区地表反照率特征分析[J]. 冰川冻土, 2010, 32(3): 480-488.]
[37]  Yang Meixue, Yao Tandong, Gou Xiaohua, et al. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J]. Chinese Science Bulletin, 2007, 52(1): 136-139. [杨梅学, 姚檀栋, Nozomu H, 等. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1974-1976.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133