全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

祁连山大通河源多年冻土区浅层土壤水热时空变化特征

DOI: 10.7522/j.issn.1000-0240.2014.0120, PP. 994-1001

Keywords: 浅层土壤水热特征,多年冻土,祁连山

Full-Text   Cite this paper   Add to My Lib

Abstract:

在大通河源不同草甸生态系统中建立浅层土壤水热监测网络.2010-2011年监测结果表明土壤温度和水分均具有明显的冻融交替和空间梯度变化格局.在沼泽化草甸和典型草甸区,土壤融化和冻结末期分别出现在5月底、6月初和11月中下旬;而退化草甸区对应的时间则出现在4月底、5月初和11月中上旬.在沼泽化草甸和典型草甸土壤温度变化曲线上有明显的“零点幕”时期,而退化草甸则不太明显.土壤温度曲线的阶段划分结果表明,沼泽化草甸和典型草甸各阶段不存在显著差异,二者阶段划分曲线基本重合,均可以划分为6个阶段春季升温阶段、春季“零点幕”阶段、夏季升温阶段、秋季降温阶段、秋季“零点幕”阶段和冬季降温阶段.对于退化草甸而言,春季和秋季“零点幕”时期不明显,阶段划分曲线与前二者具有较大差异.退化草甸温度曲线“零点幕”时期不显著对应于下伏多年冻土临近岛状多年冻土边缘,是最易于受环境影响变化而发生退化的区域.3个监测场地浅层土壤水热格局一定程度上指示了下伏多年冻土的空间分布格局.

References

[1]  Yang Jian, Ma Yaoming. Soil temperature and moisture features of typical unerlying surface in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 813-820. [杨健, 马耀明. 青藏高原典型下垫面的土壤温湿特征[J]. 冰川冻土, 2012, 34(4): 813-820.]
[2]  Shur Y L, Jorgenson M T. Patterns of permafrost formation and degradation in relation to climate and ecosystems[J]. Permafrost and Periglacial Processes, 2007, 18(1): 7-19.
[3]  Bakalin V A, Vetrova V P. Vegetation-permafrost relationships in the zone of sporadic permafrost distribution in the Kamchatka Peninsula[J]. Russian Journal of Ecology, 2008, 39(5): 338-346.
[4]  Nguyen T N, Burn C R, King D J, et al. Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories[J]. Permafrost and Periglacial Processes, 2009, 20(2): 141-153.
[5]  Yang M, Nelson F E, Shiklomanov N I, et al.Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research[J]. Earth-Science Reviews, 2010, 103(1/2): 31-44.
[6]  Yang Z, Ou Y, Xu X, et al.Effects of permafrost degradation on ecosystems[J]. Acta Ecologica Sinica, 2010, 30(1): 33-39.
[7]  Mazhitova G, Malkova G, Chestnykh O, et al.Active-layer spatial and temporal variability at European Russian circumpolar-active-layer-monitoring (calm) sites[J]. Permafrost and Periglacial Processes, 2004, 15(2): 123-139.
[8]  Tarnocai C, Nixon F M, Kutny L. Circumpolar-active-layer-monitoring (CALM) sites in the Mackenzie Valley, northwestern Canada[J]. Permafrost and Periglacial Processes, 2004, 15(2): 141-153.
[9]  Zhao L, Wu Q B, Marchenko S S, et al.Thermal state of permafrost and active layer in central Asia during the international polar year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207.
[10]  Hinkel K M, Paetzold F, Nelson F E, et al.Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993-1999[J]. Global and Planetary Change, 2001, 29(3/4): 293-309.
[11]  Yue Guangyang, Zhao Lin, Zhao Yonghua, et al.Relationship between soil properties to permafrost active layer and surface vegetation in Xidatan on the Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 565-573. [岳广阳, 赵林, 赵拥华, 等. 青藏高原西大滩多年冻土活动层土壤性状与地表植被的关系[J]. 冰川冻土, 2013, 35(3): 565-573.]
[12]  Zhang Wei, Wang Genxu, Zhou Jian, et al.Simulating the water-heat processes in permafrost regions in the Tibetan Plateau based on CoupModel[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1099-1109. [张伟, 王根绪, 周剑, 等. 基于CoupModel的青藏高原多年冻土区土壤水热过程模拟[J]. 冰川冻土, 2012, 34(5): 1099-1109.]
[13]  Liu Yang, Zhao Lin, Li Ren. Simulation of the soil water-thermal features within the active layer in Tanggula region, Tibetan Plateau, by using SHAW model[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 280-290. [刘杨, 赵林, 李韧. 基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J]. 冰川冻土, 2013, 35(2): 280-290.]
[14]  Wu Q, Shi B, Fang H-Y. Engineering geological characteristics and processes of permafrost along the Qinghai-Xizang (Tibet) Highway[J]. Engineering Geology, 2003, 68(3/4): 387-396.
[15]  Wang Genxu, Liu Lin'an, Liu Guangsheng, et al.Impacts of grassland vegetation cover on the active-layer thermal regime, northeast Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2010, 21(4): 335-344.
[16]  Wang G, Liu G, Li C, et al.The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region[J]. Agricultural and Forest Meteorology, 2012, 162/163: 44-57.
[17]  Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China[M]. Beijing: Sciences Press, 2000: 309-310. [周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 309-310.]
[18]  Li Jing, Sheng Yu, Chen Ji, et al.Modeling permafrost temperature distribution and analysing zoning characteristics of permafrost in the source region of the Datong River[J]. Journal of China University of Mining & Technology, 2012, 41(1): 145-152. [李静, 盛煜, 陈继, 等. 大通河源区冻土地温模拟与分类特征分析[J]. 中国矿业大学学报, 2012, 41(1): 145-152.]
[19]  Zhou Xingmin. Chinese Kobresia Meadow[M]. Beijing: Science Press, 2001: 51-73. [周兴民. 中国嵩草草甸[M]. 北京: 科学出版社, 2001: 51-73.]
[20]  Zhang X, Sheng Y, Li J, et al.Changes of alpine ecosystem along the ground temperature of permafrost in the source region of Datong River in the northeastern Qinghai-Tibet Plateau[J]. Journal of Food, Agriculture & Environment, 2012, 10(1): 970-976.
[21]  Li Jing, Sheng Yu, Chen Ji, et al.Characteristics of ground temperatures and influencing factors of permafrost development and distribution in the source region of Datong River[J]. Progress in Physical Geography, 2011, 30(7): 827-836. [李静, 盛煜, 陈继, 等. 大通河源区多年冻土的地温特征及其影响因素分析[J]. 地理科学进展, 2011, 30(7): 827-836.]
[22]  Liu Jimin, Shen Ying, Zhao Shuping. High-precision thermistor temperature sensor: Technological improvement and application[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 765-771. [刘继民, 沈颖, 赵淑萍. 高精度热敏电阻温度传感器的技术改进及使用特点[J]. 冰川冻土, 2011, 33(4): 765-771.]
[23]  Jin Huijun, Sun Liping, Wang Shaoling, et al.Dual influences of local environmental variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau (I): Vegetation and snow cover[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 535-545. [金会军, 孙立平, 王绍令, 等. 青藏高原中、 东部局地因素对地温的双重影响(I): 植被和雪盖[J]. 冰川冻土, 2008, 30(4): 535-545.]
[24]  Lü Lanzhi, Jin Huijun, Wang Shaoling, et al.Dual influences of local environmental variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau (II): Sand-layer and surface water bodies[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 546-555. [吕兰芝, 金会军, 王绍令, 等. 青藏高原中、 东部局地因素对地温的双重影响(II): 砂层和水被[J]. 冰川冻土, 2008, 30(4): 546-555.]
[25]  Chasmer L, Quinton W, Hopkinson C, et al.Vegetation canopy and radiation controls on permafrost plateau evolution within the discontinuous permafrost zone, Northwest Territories, Canada[J]. Permafrost and Periglacial Processes, 2011, 22(3): 199-213.
[26]  Quinton W L, Hayashi M, Chasmer L E. Permafrost-thaw-induced land-cover change in the Canadian subarctic: Implications for water resources[J]. Hydrological Processes, 2011, 25(1): 152-158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133