全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2014 

多年冻土区高等级公路特殊路基长期降温效果研究

DOI: 10.7522/j.issn.1000-0240.2014.0118, PP. 976-986

Keywords: 渗透率,惯性阻力系数,封闭块石基底路基,块石夹层路基,通风管-封闭块石基底复合路基,多年冻土

Full-Text   Cite this paper   Add to My Lib

Abstract:

气候变暖背景下,块石路基及通风管-封闭块石基底复合路基成为多年冻土区高等级公路冷却路基的主要结构形式.为探明不同直径块石层的渗流特征和规律,开展了立方排列球体室内风洞试验,一方面获得了渗透率和惯性阻力系数及其与球体直径间的统计关系;另一方面得到了球体层内部压力梯度与渗流速度呈二次非线性关系.基于该试验得到的参数和关系,采用多孔介质中流固耦合传热模型,通过有限体积法模拟了柴木铁路块石路基的降温效果,并利用实测数据验证了模型及参数的可靠性.在此基础之上,以青藏高等级公路特殊路基为原型,使用该传热模型开展了封闭块石基底路基和通风管-块石复合路基长期冷却降温效果的数值模拟研究.结果表明封闭块石基底路基和通风管-封闭块石复合路基在研究期内均有降温效果,可以提高路基下人为上限,而块石夹层路基在一定时期内可以提高冻土上限,但下部土体温度升高,长期降温效果较差.

References

[1]  Wu Qingbai, Niu Fujun. Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2013, 58(10): 1079-1094. [吴青柏, 牛富俊. 青藏高原多年冻土变化与工程稳定性[J]. 科学通报, 2013, 58(2): 115-130.]
[2]  Kong Xiangbing, Zhao Shuping, Mu Yanhu, et al. Research on the calculation of dynamic stress of embankment in permafrost regions under train load[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1490-1498. [孔祥兵, 赵淑萍, 穆彦虎, 等. 列车荷载作用下冻土路基中的动应力计算研究[J]. 冰川冻土, 2013, 35(6): 1490-1498.]
[3]  Liu Zhiqiang, Xin Jian, Yu Wenbing. Random temperature fie-lds of high-level highway wide embankment in cold regions[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1499-1504. [刘志强, 辛建, 喻文兵. 寒区高等级公路宽幅路基的随机温度场[J]. 冰川冻土, 2013, 35(6): 1499-1504.]
[4]  Liu Shiwei, Zhang Jianming. Review on physic-mechanical pro-perties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129. [刘世伟, 张建明. 高温冻土物理力学特征研究现状[J]. 冰川冻土, 2012, 34(1): 120-129.]
[5]  Wu Qingbai, Cheng Guodong, Ma Wei. Impact of permafrost change on the Qinghai-Tibet Railroad engineering[J]. Science in China (Series D: Earth Sciences), 2004, 47(S1): 122-130.
[6]  Cheng Guodong. The interactions of the Qinghai-Tibet railway engineering and permafrost and environmental effects[J]. Journal of Chinese Academy of Sciences, 2002, 17(1): 21-25. [程国栋. 青藏铁路工程与多年冻土相互作用及环境效应[J]. 中国科学院院刊, 2002, 17(1): 21-25.]
[7]  Cheng Guodong. Construction of Qinghai-Tibet railway with cooled roadbed[J]. China Railway Science, 2003, 24(3): 1-4. [程国栋. 用冷却路基的方法修建青藏铁路[J]. 中国铁道科学, 2003, 24(3): 1-4.]
[8]  Cheng Guodong, Sun Zhizhong, Niu Fujun. Application of roa-dbed cooling methods in the Qinghai-Tibet railway construction[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 797-808. [程国栋, 孙志忠, 牛富俊. "冷却路基"方法在青藏铁路上的应用[J]. 冰川冻土, 2006, 28(6): 797-808.]
[9]  Niu Fujun, Cheng Guodong, Yu Qihao. Ground-temperature controlling effects of duct-ventilated railway embankment in permafrost regions[J]. Science in China (Series D: Earth Sciences), 2004, 47(S1): 141-152.
[10]  Li Yongqiang, Han Longwu, Cui Long, et al. Analysis on measurement result of probes in Fenghuoshan area of Qinghai-Tibet plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2669-2672. [李永强, 韩龙武, 崔珑, 等. 热棒在青藏高原风火山地区的实测效果分析[J]. 岩石力学与工程学报, 2003, 22(S2): 2669-2672.]
[11]  Ma Wei, Qi Jilin, Wu Qingbai. Analysis of the deformation of embankments on the Qinghai-Tibet railway[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(11): 1645-1654.
[12]  Sun Zhizhong, Ma Wei, Li Dongqing. Ground temperature characteristics of block stone embankment and traditional embankment at Beiluhe along Qinghai-Tibet railway[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 303-308. [孙志忠, 马巍, 李东庆. 青藏铁路北麓河试验段块石路基与普通路基的地温特征[J]. 岩土工程学报, 2008, 30(2): 303-308.]
[13]  Zhang Mingyi, Lai Yuanming, Dong Yuanhong, et al. Laboratory investigation on cooling effect of duct-ventilated embankment with a chimney in permafrost regions[J]. Cold Regions Science and Technology, 2008, 54(2): 115-119.
[14]  Dong Yuanhong, Lai Yuanming, Chen Wu. Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1043-1049. [董元宏, 赖远明, 陈武. 多年冻土区宽幅公路路基降温效果研究: 一种L型热管-块碎石护坡复合路基[J]. 岩土工程学报, 2012, 34(6): 1043-1049.]
[15]  Yu Wenbing, Lai Yuanming, Niu Fujun, et al. Temperature field features in the laboratory experiment of the ventilated railway embankment in permafrost regions[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 601-607. [喻文兵, 赖远明, 牛富俊, 等. 多年冻土区铁路通风路基室内模型试验的温度场特征[J]. 冰川冻土, 2002, 24(5): 601-607.]
[16]  Yu Qihao, Qian Jin, You Yanhui, et al. Experimental study of convective characteristics of block-stone embankment[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 411-417. [俞祁浩, 钱进, 游艳辉, 等. 块石路基对流特性实验研究[J]. 冰川冻土, 2012, 34(2): 411-417.]
[17]  Dong Yuanhong, Lai Yuanming, Li Jinbo, et al. Laboratory investigation on the cooling effect of crushed-rock interlayer embankment with ventilated ducts in permafrost regions[J]. Cold Regions Science and Technology, 2010, 61(2/3): 136-142.
[18]  He Shusheng, Zhang Mingyi, Zhang Yao, et al. Laboratory investigation on cooling characteristics of open block-stone revetment in permafrost regions[J]. Journal of the China Railway Society, 2008, 30(4): 55-58. [何树生, 张明义, 张耀, 等. 多年冻土区开放块石护坡降温特性室内试验研究[J]. 铁道学报, 2008, 30(4): 55-58.]
[19]  Zhang Kun, Li Dongqing, Niu Fujun, et al. Cooling effects study on ventilated embankments under the influence of the temperature differences between the sunny slopes and the shady slopes[J]. Cold Regions Science and Technology, 2011, 65(2): 226-233.
[20]  Hu Mingjian, Wang Ren, Kong Lingwei, et al. Simulated experiment of the embankment with perforated ventilation pipes and the features of its initial temperature field of the Qinghai-Tibet railway[J]. Journal of Glaciology and Geocryology, 2004, 26(5): 582-586. [胡明鉴, 汪稔, 孔令伟, 等. 青藏铁路透壁通风管通风路基模型试验及初始温度场特征[J]. 冰川冻土, 2004, 26(5): 582-586.]
[21]  Lai Yuanming, Wang Qiusheng, Niu Fujun, et al. Three-dimensional nonlinear analysis for temperature characteristic of ventilated embankment in permafrost regions[J]. Cold Regions Science and Technology, 2004, 38(2): 165-184.
[22]  Li Guoyu, Li Ning, Quan Xiaojuan. The temperature features for different ventilated-duct embankments with adjustable shutters in the Qinghai-Tibet railway[J]. Cold Regions Science and Technology, 2006, 44(2): 99-110.
[23]  Zhang Qinglong, Li Ning, Ma Wei, et al. analyses of the thawing consolidation of fill embankment in warm permafrost regions[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 614-621. [张青龙, 李宁, 马巍, 等. 高温冻土区填土路基融化固结变形分析[J]. 冰川冻土, 2014, 36(3): 614-621.]
[24]  Zhang Mingyi, Lai Yuanming, Zhang Jianming, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65(2): 203-210.
[25]  Cheng Guodong, Lai Yuanming, Sun Zhizhong, et al. On the thermal diode function of crushed rock layer[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 1-7. [程国栋, 赖远明, 孙志忠, 等. 碎石层的"热半导体"作用[J]. 冰川冻土, 2007, 29(1): 1-7.]
[26]  Niu Fujun, Ma Wei, Lai Yuanming. Analysis on ground temperature changes of the soils under duct-ventilation embankment of Qinghai-Tibet railway[J]. Journal of Railway Engineering Society, 2003(4): 29-32. [牛富俊, 马巍, 赖远明. 青藏铁路管道通风路堤下土体的温度变化分析[J]. 铁道工程学报, 2003(4): 29-32.]
[27]  Mu Yanhu, Ma Wei, Wu Qingbai, et al. Cooling processes and effects of crushed rock embankment along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2012, 78: 107-114.
[28]  Nield D A, Bejan A. Convection in Porous Media[M]. 2nd ed. New York: Springer-Verlag, 1999: 10-11.
[29]  Yang Lijun, Sun Binxiang, Liu Qi, et al. Applicability of the Darcy's law to convection of pore air in crushed/blocked rock embankments[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 8-15. [杨丽君, 孙斌祥, 刘琦, 等. 碎(块)石路堤孔隙空气对流运动的Darcy定律适用性[J]. 冰川冻土, 2007, 29(1): 8-15.]
[30]  Kong Xiangyan. Advanced Mechanics of Fluids in Porous Media[M]. Hefei: University of Science and Technology of China Press, 1999: 46-49. [孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 1999: 46-49.]
[31]  Wang Fujun. Analysis of Computational Fluid Dynamics: Principle and Application of CFD Software[M]. Beijing: Tsinghua University Press, 2004: 24-112. [王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 24-112.]
[32]  Cheng Guodong, Jiang Hao, Wang Keli, et al. Thawing index and freezing index on the embankment surface in permafrost regions[J]. Journal of Glaciology and Geocryology, 2003, 25(6): 603-607. [程国栋, 江灏, 王可丽, 等. 冻土路基表面的融化指数与冻结指数[J]. 冰川冻土, 2003, 25(6): 603-607.]
[33]  Chou Yaling, Sheng Yu, Wei Zhenming. Evaluation on thermal stability of embankments with different strikes in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3): 151-157.
[34]  Xu Xuezu, Wang Jiacheng, Zhang Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2001: 86-91. [徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001: 86-91.]
[35]  Qin Dahe. The Comprehensive Evaluating Report on the Environment Evolvement in West China[M]. Beijing: Science Press, 2002: 16-60. [秦大河. 中国西部环境演变评估综合报告[M]. 北京: 科学出版社, 2002: 16-60.]
[36]  Zhu Linnan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 8-14. [朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1): 8-14.]
[37]  Niu Fujun, Liu Xingfu, Ma Wei, et al. Monitoring study on the boundary thermal conditions of duct-ventilated embankment in permafrost regions[J]. Cold Regions Science and Technology, 2008, 53(3): 305-316.
[38]  Zhang Zhengrong. Heat Transfer[M]. Beijing: Higher Education Press, 1989: 133-134. [张正荣. 传热学[M]. 北京: 高等教育出版社, 1989: 133-134.]
[39]  Li Dongqing, Chen Jin, Meng Qingzhou, et al. Numeric simulation of permafrost degradation in the eastern Tibetan Plateau[J]. Permafrost and Periglacial Process, 2008, 19: 93-99.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133