全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

基于模块化建模方法的寒区水文过程模拟——在中国西北寒区的应用

DOI: 10.7522/j.issn.1000-0240.2013.0047, PP. 389-400

Keywords: 寒区水文过程,模块化建模,CRHM,融雪径流过程,冻土融化径流过程

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国西北高山、高原广泛分布着冻土和积雪,春季融雪和冻土融化是该地区重要的水文过程.基于模块化的寒区水文建模环境CRHM,根据流域水文过程特征和观测数据约束,选取描述不同寒区子水文过程的模块构建寒区水文模型,并基于长期观测的两个典型寒区小流域来验证模块化的寒区水文模型.在冰沟流域,主要模拟雪的积累/消融、雪的升华、融雪下渗和融雪径流过程.结果显示冰沟流域积雪升华占降雪量(145.5cm)的48%,其中风吹雪引起的升华损失量(35cm)占积雪升华(69cm)的一半,风速和辐射引起的积雪升华是该地区积雪物质平衡的重要组成;构建的寒区水文模型可以再现春季积雪消融引起的径流过程.在左冒孔冻土流域,主要模拟冻土下渗过程、冻土坡面产流过程和土壤冻融对径流的影响.结果显示构建的寒区水文模型可以捕捉到春季主要的冻土融化径流过程.两个流域的验证结果揭示模块化的建模方法在搭建模型结构的时候减少了模型的不确定性,所以在未经率定的情况下,具有在无资料和资料缺少地区模拟寒区水文要素和水文过程的能力.

References

[1]  Zhang T, Barry R G, Knowles K, et al. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere[C]//Phillips M, Springman S M, Arenson L U. Proceedings of the 8th International Conference on Permafrost. Lisse, Netherlands: Swets & Zeitlinger Publishers, 2003: 1289-1294.
[2]  Wang Zhilan, Wang Chenghai. Predicting the snow water equivalent over China in the next 40 years based on climate models from IPCC AR4 [J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1273-1283. [王芝兰, 王澄海. IPCC AR4多模式对中国地区未来40 a雪水当量的预估[J]. 冰川冻土, 2012, 34(6): 1273-1283.]
[3]  Du Jun, Jian Jun, Hong Jianchang, et al. Response of seasonal frozen soil to climate change on Tibet region from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 512–521. [杜军, 建军, 洪健昌, 等. 1961-2010年西藏季节性冻土对气候变化的响应[J]. 冰川冻土, 2012,34(3): 512-521.]
[4]  Adam J C, Hamlet A F, Lettenmaier D P. Implications of global climate change for snowmelt hydrology in the twenty-first century[J]. Hydrological Processes, 2009, 23: 962-972.
[5]  Gao Qianzhao, Shi Shengsheng, Wen Peian, et al. Water resources in the arid zone of northwest China[J]. Journal of Desert Research, 1992, 12(4): 1-12. [高前兆, 史胜生, 温培安, 等. 中国西北干旱地区的水资源[J]. 中国沙漠, 1992, 12(4):1-12.]
[6]  Anderson E A. A Point Energy and Mass Balance Model of a Snow Cover, NOAA Technical Report NWS[R]. Silver Spring, MD: US Department of Commerce & National Oceanic and Atmospheric Administration & National Weather Service, 19, 1976: 1-150.
[7]  Philip J R, de Vries D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222-232.
[8]  Jansson P E, Moon D S. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J]. Environmental Modelling & Software, 2001, 16(1): 37-46.
[9]  Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I: Theory and development[J]. Transactions of the American Society of Agricultural Engineers, 1989,32: 565-571.
[10]  Bartelt P, Lehning M. A physical SNOWPACK model for Avalanche Warning Services Part I: numerical model[J]. Cold Regions Science and Technology, 2002, 35: 123-145.
[11]  Zhang Z, Kane D L, Hinzman L D. Development and application of a spatially-distributed Arctic hydrological and thermal process model (ARHYTHM)[J]. Hydrological Processes, 2000, 14: 1017-1044.
[12]  Braun L N, Renner C B. Applications of a conceptual runoff model in different physiographic regions of Switzerland[J]. Hydrological Sciences Journal, 1992, 73(3): 217-231.
[13]  Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. Water Resources Research, 1994, 30(6): 1665-1679.
[14]  Rigon R, Bertoldi G, Over T M. GEOtop: A distributed hydrological model with coupled water and energy budgets[J]. Journal of Hydrometeorology, 2006, 7(3): 371-388.
[15]  Liang X, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models [J]. Journal of Geophysical Research: Atmospheres, 1994,99(D7): 14415-14428.
[16]  Sivapalan M, Takeuchi K, Franks S, et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences [J]. Hydrological Sciences Journal, 2003,48(6): 857-880.
[17]  Gregersen J B, Gijsbers P J A, Westen S J P. OpenMI: Open modeling interface [J]. Journal of Hydroinformatics, 2007, 9(3): 175-191.
[18]  Whelan G, Nicholson T J. Proceedings of the Environmental Software Systems Compatibility and Linkage Workshop, NUREG/CP-0177. Rockville, Maryland: The U.S. Nuclear Regulatory Commission, 2002.http://www.nrc.gov/reading-rm/doc-collections/nuregs/conference/cp0177/0177.pdf.
[19]  Leavesley G H, Restrepo P J, Markstrom S L, et al. The Modular Modeling System (MMS): User's Manual, Open-File Report 96-151. Denver, Colorado: U.S. Geological Survey, 1996.
[20]  David O, Carlson J R, Leavesley G H, et al. Object Modeling System v3.0: Developer and User Handbook[R/OL].
[21]  Hill C, DeLuca C, Balaji, et al. The architecture of the earth system modeling framework[J]. Computing in Science & Engineering, 2004, 6(1): 18-28.
[22]  Moore A D, Holzworth D P, Herrmann N I, et al. The Common Modeling Protocol: A hierarchical framework for simulation of agricultural and environmental systems [J]. Agricultural Systems, 2007, 95(1-3): 37-48.
[23]  Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence [J]. Hydrological Processes, 2007, 21(19): 2650-2667.
[24]  Li Hongyi, Wang Jian, Hao Xiaohua. Influence of blowing snow on snow mass and energy exchange in the Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1084-1090. [李弘毅, 王建, 郝晓华. 祁连山区风吹雪对积雪质能过程的影响[J]. 冰川冻土, 2012, 34(5): 1084-1090.]
[25]  Wang Genxu, Hu Hongchang, Liu Guangsheng, et al. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China[J]. Hydrology and Earth System Sciences, 2009, 13(3): 327-341.
[26]  Garnier B J, Ohmura A. The evaluation of surface variations in solar radiation income [J]. Solar Energy, 1970, 13: 21-34.
[27]  Pomeroy J W, Li L. Prairie and arctic areal snow cover mass balance using a blowing snow model[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D21): 26619-26634.
[28]  Gray D M, Landine P G. Albedo model for shallow prairie snow covers [J]. Canadian Journal of Earth Sciences, 1987, 24: 1760-1768.
[29]  Gray D M, Landine P G. An energy-budget snowmelt model for the Canadian Prairies [J]. Canadian Journal of Earth Sciences, 1988, 25(8): 1292-1303.
[30]  Granger R J, Gray D M, Dyck G E. Snowmelt infiltration to frozen prairie soils [J]. Canadian Journal of Earth Sciences, 1984, 21: 669-677.
[31]  Ogden F L, Saghafian B. Green and Ampt infiltration with redistribution [J]. Journal of Irrigation and Drainage Engineering, 1997, 123(5): 386-393.
[32]  Granger R J, Gray D M. Evaporation from natural nonsaturated surfaces [J]. Journal of Hydrology, 1989, 111(1): 21-29.
[33]  Priestley C H, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100: 81-92.
[34]  Leavesley G H, Lichty R W, Troutman B M, et al. Precipitation-Runoff Modelling System: User's Manual, Water-Resources Investigations Report 83-4238[R]. Denver, Colorado: U.S. Geological Survey, 1983.
[35]  Zhao L, Gray D M. Estimating snowmelt infiltration into frozen soils[J]. Hydrological Processes, 1999, 13(12-13): 1827-1842.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133