全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

CLM3和SHAW模式在青藏高原中部NMQ站的模拟研究

DOI: 10.7522/j.issn.1000-0240.2013.0035, PP. 291-300

Keywords: CLM3.0,SHAW,土壤,温度,含水量,模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用那曲地区NMQ站2010年11月1日至2011年7月26日的观测资料作为通用陆面过程模式CLM3.0和水热耦合模式SHAW的大气强迫,在青藏高原中部季节冻土区进行了单点模拟研究.在参照观测资料的基础上,对两个陆面模式的模拟结果对比发现SHAW模式和CLM3.0模式模拟的向上短波辐射和向下长波辐射值基本相近或重合,但两个模式均未考虑新雪存在对向上短波辐射的影响,以及青藏高原日冻融循环过程中潜热释放对向上长波辐射的影响.此外,SHAW模式和CLM3.0模式均能模拟各层土壤温度的逐日变化,均是上层土壤的模拟效果较下层好;相比SHAW模式,CLM3.0各层土壤温度的模拟值更接近于实测值.对土壤含水量的模拟而言,60cm以上(包括60cm)SHAW模式和CLM3.0模式各有其优缺点,60cm以下SHAW模式的模拟结果要好于CLM3.0,尤其是土壤冻结和消融时段的模拟结果.

References

[1]  Anisimov O A, Nelson F E. Permafrost zonation and climate change in the northern hemisphere: Results from transient general circulation models [J]. Climatic Change, 1997, 35(2): 241-258.
[2]  Stendel M, Christensen J H. Impact of global warming on permafrost conditions in a coupled GCM [J]. Geophysical Research Letters, 2002,29(13), doi:10.1029/2001GL014345.
[3]  Nelson F E. (Un) frozen in time[J]. Science, 2003, 299: 1673-1675.
[4]  Frauenfeld O W, Zhang T, Barry R G, et al. Interdecadal changes in seasonal freeze and thaw depths in Russia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D5), doi: 10.1029/2003JD004245.
[5]  Lawrence D M, Slater A G. A projection of severe near-surface permafrost degradation during the 21st century [J]. Geophysical Research Letters, 2005,32(24), doi: 10.1029/2005GL025080.
[6]  Delisle G. Near-surface permafrost degradation: How severe during the 21st century?[J]. Geophysical Research Letters, 2007, 34(9), doi: 10.1029/2007GL029323.
[7]  Oelke C, Zhang T. Modeling the active-layer depth over the Tibetan Plateau [J]. Arctic, Antarctic, and Alpine Research, 2007, 39(4): 714-722.
[8]  Zhang T, Nelson F E, Gruber S. Introduction to special section: permafrost and seasonally frozen ground under a changing climate[J]. Journal of Geophysical Research, 2007,112, F02S01, doi: 10.1029/2007JF000821.
[9]  Zhang Y, Chen W, Riseborough D W. Disequilibrium response of permafrost thaw to climate warming in Canada over 1850 2100[J]. Geophysical Research Letters, 2008, 35(2), doi: 10.1029/2007GL032117.
[10]  Wu Q, Zhang T. Recent permafrost warming on the Qinghai-Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13), doi: 10.1029/2007JD009539.
[11]  Yang M, Nelson F E, Shiklomanov N I, et al.Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research [J]. Earth-Science Reviews, 2010, 103(1-2): 31-44.
[12]  Yao Tandong, Zhu Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 2006, 21(5): 459-464. [姚檀栋, 朱立平.青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006,21(5):459-464.]
[13]  Qin Dahe, Ding Yongjian. Cryospheric changes and their impacts: present, trends and key issues[J].Advances in Climate Change Research, 2009, 5(4): 187-195. [秦大河,丁永建. 冰冻圈变化及其影响研究——现状、 趋势及关键问题[J]. 气候变化研究展, 2009, 5(4):187-195.]
[14]  Peng Wen, Gao Yanhong. A simulation of the energy and water cycles in seasonal freezing-thawing process on the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2011,33(2):364-373. [彭雯, 高艳红. 青藏高原融冻过程中能量和水分循环的模拟研究[J]. 冰川冻土, 2011, 33(2):364-373.]
[15]  Yang Jian, Ma Yaoming. Soil temperature and moisture features of typical underlying surface in the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2012, 34(4): 813-820. [杨健, 马耀明. 青藏高原典型下垫面的土壤温湿特征[J]. 冰川冻土, 2012, 34(4): 813-820.]
[16]  Sun Shufen. Physical, Biochemical Mechanism and Parameters of the Land Surface Process Model[M]. Beijing: China Meteorological Press, 2005: 1-73.
[17]  Wang Chenghai, Dong Wenjie, Wei Zhigang. Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in East-Asia[J]. Chinese Journal of Geophysics, 2003, 46(3):309-316. [王澄海, 董文杰, 韦志刚.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 2003, 46(3):309-316.]
[18]  Xia Kun, Luo Yong, Li Weiping. Simulation of freezing and melting of soil on the northeast Tibetan Plateau[J]Chinese Science Bulletin, 2011, 56(20): 2145-2155. [夏坤, 罗勇, 李伟平.青藏高原东北部土壤冻融过程的数值模拟[J].科学通报, 2011, 56(22):1828-1838.]
[19]  Li Zhenkun, Wu Bingyi, Zhu Weijun, et al. Improvement and validation of the frozen soil parameterization scheme used in NCAR CLM3.0 model [J]. Climatic and Environmental Research, 2011, 16(2): 137-148. [李震坤, 武炳义, 朱伟军, 等. CLM3.0模式中冻土过程参数化的改进及模拟试验[J].气候与环境研究, 2011,16(2):137-148.]
[20]  Wang Chenghai, Shi Rui. Simulation of the land surface processes in the Western Tibetan Plateau in summer[J]. Journal of Glaciology and Geocryology, 2007, 29(1):73-81 [王澄海, 师锐.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土, 2007, 29(1):73-81.]
[21]  Wang Chenghai, Shi Rui, Zuo Hongchao. Analysis on simulation of characteristic of land surface in Western Qinghai-Xizang Plateau during frozen and thawing[J]. Plateau Meteorology, 2008, 27(2):239-248. [王澄海, 师锐, 左洪超. 青藏高原西部冻融期陆面过程的模拟分析[J].高原气象, 2008, 27(2):239-248.]
[22]  Luo Siqiong, Lü Shihua, Zhang Yu, et al. Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM[J]. Plateau Meteorology, 2008, 27(2):259-271.[罗斯琼, 吕世华, 张宇, 等. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 2008, 27(2):259-271.]
[23]  Xiao Yao, Zhao Lin, Li Ren, et al. Applicability of CoLM model (single-point) on permafrost regions of the Qinghai-Xizang Plateau[J]. Journal of Mountain Science, 2011, 29(5):633-640.[肖瑶, 赵林, 李韧, 等. CoLM模型在高原多年冻土区的单点模拟适用性[J].山地学报, 2011, 29(5):633-640.]
[24]  Guo Donglin, Yang Meixue, Li Min, et al. Analysis on simulation of characteristic of land surface energy flux in seasonal frozen soil region of Central Tibetan Plateau[J]. Plateau Meteorology, 2009, 28(5):978-987.[郭东林, 杨梅学, 李敏, 等.青藏高原中部季节冻土区地表能量通量的模拟分析[J].高原气象, 2009, 28(5):978-987.]
[25]  Guo Donglin, Yang Meixue. Simulation of soil temperature and moisture in seasonally frozen ground of Central Tibetan Plateau by SHAW model[J]. Plateau Meteorology, 2010, 29(6):1369-1377.[郭东林, 杨梅学. SHAW模式对青藏高原中部季节冻土区土壤温、 湿度的模拟[J].高原气象, 2010, 29(6):1369-1377.]
[26]  Zhang Wei, Wang Genxu, Zhou Jian, et al. Simulation the water-heat process in permafrost regions in the Tibetan Plateau based on CoupModel[J]. Journal of Glaciology and Geocryology,2012, 34(5): 1099-1109.[张伟, 王根绪, 周剑, 等.基于CoupModel的青藏高原多年冻土区土壤水热过程模拟[J]. 冰川冻土, 2012, 34(5): 1099-1109.]
[27]  Lu Q, Gao W, Gao Z, et al. Numerical simulation of surface heat and water fluxes in Tibet Plateau[C]//Proc. SPIE 6298, Remote Sensing and Modeling of Ecosystems for Sustainability III. San Diego, CA, Aug. 13, 2006, doi:10.1117/12.676199.
[28]  St?ckli R, Lawrence D M, Niu G-Y, et al. Use of FLUXNET in the Community Land Model development[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G1), doi: 10.1029/2007JG000562.
[29]  Oleson K W, Dai Y J, Bonan G. CLM3.0 Technical Description[M]. Boulder, Colorado: National Center for Atmospheric Research, 2004: 1-174.
[30]  Campbell G S. A simple method for determining unsaturated conductivity from moisture retention data[J]. Soil Science, 1974, 117: 311-314.
[31]  Yang M, Yao T, Gou X, et al. Precipitation distribution along the Qinghai-Xizang (Tibetan) Highway, summer 1998[J]. Arctic, Antarctic, and Alpine Research, 2008, 40(4): 761-769.
[32]  Li Ren, Zhao Lin, Ding Yongjian, et al. Variations of surface effective radiation and its effect on superficial ground temperatures on Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2011,33(5): 1022-1032.[李韧, 赵林, 丁永建, 等. 青藏高原地面有效辐射变化及其对表层土温的影响[J]. 冰川冻土, 2011, 33(5): 1022-1032.]
[33]  Nobre C A, Sellers P J, Shukla J. Amazonian deforestation and regional climate change [J]. Journal of Climate, 1991,4(10): 957-988.
[34]  Shukla J, Mintz Y. Influence of land surface evapotranspiration on the earth's climate [J]. Science, 1982, 215: 1498-1501.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133