全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究

DOI: 10.7522/j.issn.1000-0240.2013.0036, PP. 301-309

Keywords: 反照率,遥感反演,窄波段,宽波段

Full-Text   Cite this paper   Add to My Lib

Abstract:

冰川反照率是联系冰川与气候、寒区水文过程的纽带,也是制约分布式冰川能量-物质平衡模型发展的重要因子.冰雪反照率的变化会改变整个地气系统的能量收支平衡,亦可引起局地以至全球的气候变化.利用LandsatTM/ETM+数据,运用不同学者提出的窄波段转换宽波段的方程,反演了祁连山七一冰川总短波段的反照率.把不同的转换方程得到反演值与实测值进行比较,选择绝对误差最小的反演公式.结果表明Duguay1992模型提出的方程能保证4景影像反演值与实测值的绝对误差在0.05范围内,而气候模式输入的反照率产品要求绝对误差在0.05以内.运用该方程反演的反照率结果,较其他方程要准确,可为分布式冰川物质-能量平衡模型的构建提供更准确的参数数据.

References

[1]  Jiang Xi, Wang Ninglian, He Jianqiao,et al. A study of parameterization of albedo on the Qiyi Glacier in Qilian Mountains, China[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 30-37.[蒋熹, 王宁练, 贺建桥, 等. 祁连山七一冰川反照率的参数化研究[J]. 冰川冻土, 2011, 33(1): 30-37.]
[2]  Paterson W S B. The Physics of Glaciers[M]. Tarrytown, NY: Pergamon, 1994.
[3]  Bloch M R. Dust-induced albedo changes of polar ice sheets and glacierization[J]. Journal of Glaciology, 1964, 5(38): 241-244.
[4]  Li Ren, Zhao Lin, Ding Yongjian,et al. Variations of surface effective radiation and its effect on superficial ground temperatures on Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011,33(5): 1022-1032.[李韧, 赵林, 丁永建, 等. 青藏高原地面有效辐射变化及其对表层土温的影响[J]. 冰川冻土, 2011, 33(5): 1022-1032.]
[5]  Liang S, Shuey C J, Russ A L,et al. Narrowband to broadband conversions of land surface albedo: II. Validation[J]. Remote Sensing of Environment, 2003, 84(1): 25-41.
[6]  Liang S, Fang H, Chen M,et al. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1-2): 149-162.
[7]  Reijmer C H, Knap W H, Oerlemans J. The surface albedo of the Vatnaj?kull ice cap, Iceland: a comparison between satellite-derived and ground-based measurements[J]. Boundary-Layer Meteorology, 1999, 92(1): 123-143.
[8]  Liu Zhenhua, Zhao Yingshi, Song Xiaoning. A simplified surface albedo inverse model with MODIS data[C]//2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings, Vol.7. IEEE, 2004, 7: 4367-4370.
[9]  Sakai A, Matsuda Y, Fujita K,et al. Meteorological observation at July 1st Glacier in northwest China from 2002 to 2005[J]. Bulletin of Glaciological Research, 2006, 23: 23-32.
[10]  Chander G, Markham B. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(11): 2674-2677.
[11]  Wang Jie, He Xiaobo, Ye Baisheng,et al. Variations of albedo on the Dongkemadi Glacier, Tanggula Range[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 21-28.[王杰, 何晓波, 叶柏生, 等. 唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1): 21-28.]
[12]  Civco D. Topographic normalization of Landsat Thematic Mapper digital imagery [J]. Photogrammetric Engineering and Remote Sensing, 1989,55: 1303-1309.
[13]  Colby J D. Topographic normalization in rugged terrain[J]. Photogrammetric Engineering and Remote Sensing, 1991,57(5): 531-537.
[14]  Gu D, Gillespie A. Topographic normalization of Landsat TM images of forest based on subpixel sun-canopy-sensor geometry [J]. Remote Sensing of Environment, 1998, 64(2): 166-175.
[15]  Sandmeier S, Itten K I. A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 708-717.
[16]  Li Jing. Estimating the albedo in mountainous areas using remote sensing images and DEM [J]. Journal of Glaciology and Geocryology, 2010, 32(3): 514-518.[李净. 利用TM遥感影像和DEM估算山区地表反照率[J]. 冰川冻土, 2010, 32(3): 514-518.]
[17]  Li Xin, Cheng Guodong, Chen Xianzhang,et al. Modification of solar radiation model over rugged terrain[J]. Chinese Science Bulletin, 1999, 44(15): 1345-1350.[李新, 程国栋, 陈贤章, 等. 任意地形条件下太阳辐射模型的改进[J]. 科学通报, 1999, 44(9): 993-998.]
[18]  Qin Chun, Wang Jian. Improved CIVCO topographic correction model and application[J]. Remote Sensing Technology and Application, 2008, 23(1): 82-88.[秦春, 王建. CIVCO地形校正模型的改进及其应用[J]. 遥感技术与应用, 2008, 23(1): 82-88.]
[19]  ASC Flash Center. Flash User's Guide, Version 2.5. Chicago: University of Chicago, 2005.
[20]  Kaufman Y J, Wald A E, Remer L A,et al. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1286-1298.
[21]  Liang S. Narrowband to broadband conversions of land surface albedo I: Algorithms[J]. Remote Sensing of Environment, 2000, 76(2): 213-238.
[22]  Duguay C R, Ledrew E F. Estimating surface reflectance and albedo from Landsat-5 Thematic Mapper over rugged terrain[J]. Photogrammetric Engineering and Remote Sensing, 1992, 58: 551-558.
[23]  Gratton D J, Howarth P J, Marceau D J. Using Landsat-5 Thematic Mapper and digital elevation data to determine the net radiation field of a mountain glacier[J]. Remote Sensing of Environment, 1993,43(3): 315-331.
[24]  Knap W H, Reijmer C H, Oerlemans J. Narrowband to broadband conversion of Landsat TM glacier albedos[J]. International Journal of Remote Sensing, 1999, 20(10): 2091-2110.
[25]  Greuell W, Reijmer C H, Oerlemans J. Narrowband-to-broadband albedo conversion for glacier ice and snow based on aircraft and near-surface measurements[J]. Remote Sensing of Environment, 2002, 82(1): 48-63.
[26]  Greuell W, Oerlemans J. Narrowband-to-broadband albedo conversion for glacier ice and snow: Equations based on modeling and ranges of validity of the equations[J]. Remote Sensing of Environment, 2004, 89(1): 95-105.
[27]  Xiao Yao, Zhao Lin, Li Ren,et al. The characteristics of surface albedo in permafrost regions of Northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 480-488.[肖瑶, 赵林, 李韧, 等. 藏北高原多年冻土区地表反照率特征分析[J]. 冰川冻土, 2010, 32(3): 480-488.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133