Margesin R. Permafrost Soils[M]. Berlin: Springer-Verlag, 2009.
[2]
Rodrigues D F, Tiedje J M. Coping with our cold planet[J]. Applied and Environmental Microbiology, 2008, 74(22): 1677-1686.
[3]
Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms[J]. Research in Microbiology, 2011, 162(3): 346-361.
[4]
Steven B, Leveille R, Pollard W H, et al. Microbial ecology and biodiversity in permafrost[J]. Extremophiles, 2006, 10: 259-267.
[5]
Cavicchioli R. Cold-adapted archaea[J]. Nature Reviews Microbiology, 2006, 4: 331-343.
[6]
Pester M, Schleper C, Wagner M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology[J]. Current Opinion in Microbiology, 2011, 14(3): 300-306.
[7]
He Jizheng, Shen Jupei, Zhang Limei. Advance in the research of soil non-thermophilic Crenarchaeota[J]. Acta Ecologica Sinica, 2009,29(9):5047-5055.[贺纪正,沈菊培,张丽梅.土壤中温泉古菌研究进展[J].生态学报, 2009, 29(9):5047-5055.]
[8]
Spang A, Hatzenpichler R, Brochier-Armanet C, et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota[J]. Trends in Microbiology, 2010, 18(8): 331-340.
[9]
Brochier-Armanet C, Boussau B, Gribaldo S, et al. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota[J]. Nature Reviews Microbiology, 2008,6: 245-252.
[10]
Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12): 1985-1995.
[11]
He J, Shen J, Zhang L, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9: 2364-2374.
[12]
Jiang H, Huang Q, Dong H, et al. RNA-based investigation of ammonia-oxidizing Archaea in hot springs of Yunnan Province, China[J]. Applied and Environmental Microbiology, 2010, 76: 4538-4541.
[13]
Nicol G W, Tscherko D, Chang L, et al. Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation[J]. Environmental Microbiology, 2006,8(8): 1382-1393.
[14]
Nicol G W, Tscherko D, Embley T M, et al. Primary succession of soil Crenarchaeota across a receding glacier foreland[J]. Environmental Microbiology, 2005, 7(3): 337-347.
[15]
Li Zhongqin, Shen Yongping, Wang Feiteng, et al. Response of glacier melting to climate change-Take ürümqi Glacier No. 1 as an example[J]. Journal of Glaciology and Geocryology, 2007,29(3): 333-342.[李忠勤,沈永平, 王飞腾, 等.冰川消融对气候变化的响应——以乌鲁木齐河源1号冰川为例[J].冰川冻土, 2007, 29(3): 333-342.]
[16]
Li Zhongqin, Han Tianding, Jin Zhefan, et al. A summary of 40-year observed variation facts of climate and Glacier No. 1 at headwater of ürümqi River, Tianshan, China[J]. Journal of Glaciology and Geocryology, 2003, 25(2): 117-123.[李忠勤,韩添丁,井哲帆,等.乌鲁木齐河源区气候变化和1号冰川40 a观测事实[J].冰川冻土, 2003, 25(2): 117-123.]
[17]
Marchenko S S, Gorbunov A P, Romanovsky V E. Permafrost warming in the Tien Shan Mountains, Central Asia[J]. Global and Planetary Change, 2007,56: 311-327.
[18]
Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997,25: 4876-4882.
[19]
Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28: 2731-2739.
[20]
Ochsenreiter T, Selezi D, Quaiser A,et al. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR[J]. Environmental Microbiology, 2003,5(9):787-797.
[21]
Zhang Limei, He Jizheng. A novel archaeal phylum: Thaumarchaeota-A review[J]. Acta Microbiologica Sinica, 2012, 52(4): 411-421.[张丽梅, 贺纪正.一个新的古菌类群——奇古菌门(Thaumarchaeota)[J].微生物学报, 2012, 52(4): 411-421.]
[22]
Brochier-Armanet C, Gribaldo S, Forterre P. Spotlight on the Thaumarchaeota[J]. The ISME Journal, 2012, 6: 227-230.
[23]
Tourna M, Michaela S, Anja S, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil[J]. Proceedings of the National Academy of Sciences,2011, 108(20): 8420-8425.
[24]
Pesaro M, Widmer F. Identification of novel Crenarchaeota and Euryarchaeota clusters associated with different depth layers of a forest soil[J]. FEMS Microbiology Ecology, 2002, 42(1): 89-98.
[25]
Wu Xiukun, Mao Wenliang, Tai Xisheng, et al. Progress in studies of microbial ecology in glacier foreland[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 217-223.[伍修锟,毛文梁,台喜生,等. 冰川前沿裸露地微生物生态学研究进展[J]. 冰川冻土, 2013, 35(1): 217-223.]
[26]
Zhang Gaosen,Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environment factors in glacier foreland[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 965-971.[章高森,张威,刘光,等.环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布[J].冰川冻土, 2012, 34(1): 965-971.]
[27]
Zumsteg A, Luster J, G?ransson H, et al. Bacterial, archaeal and fungal succession in the forefield of a receding glacier[J]. Microbial Ecology, 2012,63(3): 552-564.