全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

基于WRF驱动的CLM模型对青藏高原地区陆面过程模拟研究

DOI: 10.7522/j.issn.1000-0240.2013.0064, PP. 553-564

Keywords: CLM陆面过程模型,WRF驱动,模型评估,青藏高原,陆面能量特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

NCAR-CLM是目前国际上发展较为完善的陆面过程模型.鉴于大多数研究利用气象站点的数据驱动CLM模型,尝试将WRF气候模型的模拟结果作为驱动CLM的面上强迫场数据来对青藏高原陆面能量特征进行模拟研究.对WRF气候模型模拟的输出结果与青藏高原气象站观测数据进行比较分析表明,WRF模拟输出的气温和向下短波辐射数值与观测值的相关系数大于0.92(p>0.05),气压和比湿的R2在0.80以上(p>0.05),降雨和风速的模拟性能不稳定,但WRF模拟输出的强迫场也可以作为CLM模型的驱动数据.CLM模拟的地表温度、感热和潜热通量与青藏高原气象站观测的地表温度以及涡度通量数据验证分析表明,虽然CLM对地表温度的模拟在合理范围内,但模拟与观测值还是有较大偏差,潜热和感热之间的相关系数分别为0.87和0.68(p>0.05),表明CLM的模拟结果在单点上是可靠的.据此,在此模拟结果基础上分析了青藏高原地区的陆面能量时空分布特征.

References

[1]  Sun Shufen. Parameterization Study of Physical and Biochemical Mechanism in Land Surface Processes[M]. Beijing: China Meteorological Press, 2005: 1-8.[孙菽芬.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社, 2005: 1-8.]
[2]  Ni Yunqi. Climate Dynamics[M]. Beijing: China Meteorological Press, 1993: 335-380.[倪允琪.气候动力学[M].北京: 气象出版社, 1993: 335-380.]
[3]  Li Chongyin. Introduction to Climate Dynamics[M]. 2nd Edition. Beijing: China Meteorological Press, 2002: 311-337.[李崇银.气候动力学引论[M].第2版.北京: 气象出版社, 2002: 311-337.]
[4]  Yang Meixue, Yao Tandong. A review of the study on the impact of snow cover in the Tibetan Plateau on Asian monsoon[J]. Journal of Glaciology and Geocryology, 1998, 20(2): 186-191.[杨梅学, 姚檀栋.青藏高原雪盖对亚洲季风影响研究进展[J].冰川冻土, 1998, 20(2): 186-191.]
[5]  Wang Chenghai, Shi Rui, Zuo Hongchao. Analysis on simulation of characteristic of land surface in western Qinghai-Xizang Plateauduring frozen and thawing[J]. Plateau Meteorology, 2008, 27(2): 239-248.[王澄海, 师锐, 左洪超.青藏高原西部冻融期陆面过程的模拟分析[J].高原气象, 2008, 27(2): 239-248.]
[6]  Wang Jiemin. Land surface process experiments and interaction study in China-from HEIFE to IMGRASS and GAME Tibet/TIPEX[J]. Plateau Meteorology,1999,18(3): 280-294.[王介民.陆面过程实验和地气相互作用研究: 从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象, 1999,18(3): 280-294.]
[7]  Gao Z, Chae N, Kim J, et al. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2)[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D6), doi: 10.1029/2003JD004089.
[8]  Zhang Y, L S, Feng Q, et al. Offline experiment of land surface processes in Qinghai-Xizang Plateau[J]. Science in China Series D: Earth Sciences, 2004, 47(S1): 115-121.
[9]  Wang Chenghai, Shi Rui. Simulation of the land surface pro-cesses in the western Tibetan Plateau in summer[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 73-81.[王澄海, 师锐.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土, 2007, 29(1): 73-81.]
[10]  Zhang Yu, Lü Shihua. An experiment on the northern Qinghai-Xizang Plateau land surface model[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(3): 387-393.[张宇, 吕世华.藏北高原陆面过程的模拟试验[J].大气科学, 2002, 26(3): 387-393.]
[11]  Luo Siqiong, Lü Shihua, Zhang Yu, et al. Simulation analysis on land surface process of BJ site of central Tibetan Plateau using CoLM[J]. Plateau Meteorology, 2008, 27(2): 259-271.[罗斯琼, 吕世华, 张宇, 等. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 2008, 27(2): 259-271.]
[12]  Yang Kun, Guo Xiaofen, Wu Bingyi. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Science China Earth Sciences, 2011, 54(1): 19-28.[阳坤, 郭晓峰, 武炳义.青藏高原地表感热通量的近期变化趋势[J].中国科学: 地球科学, 2010, 40(7): 923-932.]
[13]  Dong Min, Zhu Wenmei, Xu Xiangde. The variation of surface heat flux over Tibet Plateau and its influences on the East Asia circulation in early summer[J]. Quarterly Journal of Applied Meteorology, 2001,12(4): 458-468.[董敏, 朱文妹, 徐祥德.青藏高原地表热通量变化及其对初夏东亚大气环流的影响[J].应用气象学报, 2001,12(4): 458-468.]
[14]  Cui Yang, Wang Chenghai. Comparison of sensible and latent heat fluxes during the transition season over the western Tibetan Plateau from reanalysis datasets[J]. Progress in Natural Science, 2009, 19(6): 719-726.[崔洋, 王澄海.季节转换期青藏高原西部地区感潜热再分析资料存在的问题及原因[J].自然科学进展, 2008, 18(11): 1279-1287.]
[15]  Leung L R, Kuo Y H, Tribbia J. Research needs and directions of regional climate modeling using WRF and CCSM[J]. Bulletin of the American Meteorological Society, 2006, 87(12):1747-1751.
[16]  Kumar S V, Peters-Lidard C D, Eastman J L, et al. An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF[J]. Environmental Modelling & Software, 2008, 23(2): 169-181.
[17]  Pan X D, Li X. Validation of WRF model on simulating forcing data for Heihe River Basin[J]. Sciences in Cold and Arid Regions, 2011, 3(4): 344-357.
[18]  Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965-1978.
[19]  Bonan G B, Levis S, Kergoat L, et al. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models[J]. Global Biogeochemical Cycles, 2002, 16(2), doi: 10.1029/2000GB001360.
[20]  Lawrence P J, Chase T N. Climate Impacts[M]//Geist H. Our Earth's Changing Land: An Encyclopedia of Land-use and Land-cover Change. Westport, CT: Greenwood Press, 2006: 115-124.
[21]  Lawrence P J, Chase T N. Representing a new MODIS consistent land surface in the Community Land Model (CLM3.0)[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112(G1), doi: 10.1029/2006JG000168.
[22]  Legates D R, McCabe G J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation[J]. Water Resources Research, 1999, 35(1): 233-241.
[23]  Jin Huijun, Sun Liping, Wang Shaoling, et al. Dual influences of local environmental variables on ground temperatures on the Interior-Eastern Qinghai-Tibet Plateau (I): Vegetation and snow cover[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 535-545.[金会军, 孙立平, 王绍令, 等.青藏高原中、 东部局地因素对地温的双重影响(I): 植被和雪盖[J].冰川冻土, 2008, 30(4): 535-545.]
[24]  Lü Lanzhi, Jin Huijun, Wang Shaoling, et al. Dual influences of local environmental variables on ground temperatures on the Interior-Eastern Qinghai-Tibet Plateau (II): Sand-layer and surface water bodies[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 546-555.[吕兰芝, 金会军, 王绍令, 等.青藏高原中、 东部局地因素对地温的双重影响(II): 砂层和水被[J].冰川冻土, 2008, 30(4): 546-555.]
[25]  Zhang Shiqiang, Ding Yongjian, Lu Jian, et al. Simulative study of water-heat process in the Tibetan Plateau (Ⅲ): Evaporation, short-wave radiation and net radiation[J]. Journal of Glaciology and Geocryology, 2005, 27(5): 645-648.[张世强, 丁永建, 卢建, 等.青藏高原土壤水热过程模拟研究(Ⅲ): 蒸发量、 短波辐射与净辐射通量[J].冰川冻土, 2005, 27(5): 645-648.]
[26]  Zhang Jie, Li Dongliang. Evaluation and analysis of latent heat in rainy season in Qinghai-Xizang Plateau[J]. Earth Science Frontiers, 2009, 16(1): 326-334.[张杰, 李栋梁.青藏高原夏季凝结潜热时空分布特征分析[J].地学前缘, 2009, 16(1): 326-334.]
[27]  Wang Ninglian. The boundary between the northern and sou-thern Tibetan Plateau with different variations in the warm season air temperatures on the decadal time scale[J]. Quaternary Sciences, 2006, 26(2): 165-172.[王宁练.青藏高原南部和北部暖季气温年代际变化差异的界线位置[J].第四纪研究, 2006, 26(2): 165-172.]
[28]  WilliamsM, Richardson A D, Reichstein M, et al. Improving land surface models with FLUXNET data[J]. Biogeosciences, 2009, 6(7): 1341-1359.
[29]  Li Ren, Zhao Lin, Ding Yongjian, et al. Impact of surface energy variation on thawing processes within active layer of permafrost[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1235-1242.[李韧, 赵林, 丁永建, 等.地表能量变化对多年冻土活动层融化过程的影响[J].冰川冻土, 2011, 33(6): 1235-1242.]
[30]  Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511.[张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J].冰川冻土, 2012, 34(3): 505-511.]
[31]  DuJun, Jian Jun, Hong Jianchang, et al. Response of seasonal frozen soil to climate change on Tibet Region from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 512-521.[杜军, 建军, 洪健昌, 等. 1961—2010年西藏季节性冻土对气候变化的响应[J].冰川冻土, 2012, 34(3): 512-521.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133