全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

积雪和有机质土对青藏高原冻土活动层的影响

DOI: 10.7522/j.issn.1000-0240.2013.0062, PP. 528-540

Keywords: 青藏高原,冻土活动层,有机质土壤,积雪,CoupModel

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着全球气候变暖,青藏高原冻土活动层正在逐渐加深,为了理解积雪和表层有机质土壤对冻土活动层的影响机理,一维水热耦合模型CoupModel被用于模拟气象驱动下土壤冻融的动态过程.基于祁连山冰沟和青藏高原唐古拉站长期监测数据,CoupModel模型被成功的率定和验证.在冰沟站验证的模型被用于研究积雪对冻土活动层的影响,结果显示目前较浅积雪情景(雪深20cm的雪深)并不利于冻土的发育,主要是雪相对于空气低的热传导隔绝了表层土壤向大气的热损失.在唐古拉站验证的模型被用于研究有机质土对冻土活动层的影响,结果显示随着有机质土壤深度增加,模拟的活动层夏季融化深度逐渐较小.有机质土壤较矿物质土壤低的热传导和高的热容性质减少了下伏土壤热状况对太阳辐射和气温波动的响应,说明有机质土有利于冻土的保护.

References

[1]  Kane D L, Hinzman L D, Zarling J P. Thermal response of the active layer in a permafrost environment to climatic warming[J]. Cold Regions Science and Technology, 1991, 19: 111-122.
[2]  Nelson F E, Lachenbruch A H, Woo M-K, et al. Permafrost and changing climate[C]//Proceedings of 6th International Conference on Permafrost, Vol. 2. Guangzhou: South China University of Technology Press, 1993: 987-1005.
[3]  Zhang T, Frauenfeld O W, Serreze M C, et al. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D16), doi: 10.1029/2004JD005642.
[4]  Kimball J S, McDonald K C, Keyser A R, et al. Application of NASA scatterometer (NSCAT) for determining the daily frozen and nonfrozen landscape of Alaska[J]. Remote Sensing of Environment, 2001, 75(1): 113-126.
[5]  Zhang T, Barry R G, Knowles K, et al. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere[C]//Phillips M, Springman S M, Arenson L U. Proceedings of 8th International Conference on Permafrost. Lisse, The Netherlands: Swets & Zeitlinger, 2003: 1289-1294.
[6]  Wang Jiaoyue, Song Changchun, Wang Xianwei, et al. Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 442-452.[王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2): 442-452.]
[7]  Wang Yibo, Wang Genxu, Wu Qingbai, et al. The impact of vegetation degeneration on hydrology features of alpine soil[J]. Journal of Glaciology and Geocryology, 2010, 32(5): 989-998.[王一博, 王根绪, 吴青柏, 等. 植被退化对高寒土壤水文特征的影响[J]. 冰川冻土, 2010, 32(5): 989-998.]
[8]  Weller G, Chapin F S, Everett K R, et al. The Arctic Flux Study: a regional view of trace gas release[J]. Journal of Biogeography, 1995, 22: 365-374.
[9]  Goodison B E, Brown R D, Grane R G. EOS Science Plan: Chapter 6, Cryospheric System[R]. NASA, 1998. http://igos-cryosphere.org/docs/EOS_SCI_PLAN_Ch6.pdf
[10]  Zhang T, Armstrong R L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001, 28(5): 763-766.
[11]  Hinzman L D, Kane D L, Yoshikawa K, et al. Hydrological variations among watersheds with varying degrees of permafrost[C]//Phillips M, Springman S M, Arenson L U. Proceedings of 8th International Conference on Permafrost. Lisse, The Netherlands: Swets & Zeitlinger, 2003: 407-411.
[12]  Li X, Cheng G, Jin H, et al. Cryospheric change in China[J]. Global and Planetary Change, 2008, 62: 210-218.
[13]  Zhang T, Armstrong R L, Smith J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22), doi: 10.1029/2003JD003530.
[14]  Allison I, Barry R G, Goodison B E. Climate and Cryosphere (CliC) Project Science and Co-ordination Plan: Version 1, WMO/TD No. 1053. Geneva: WMO, 2001.
[15]  Lemke P, Ren J, Alley R B, et al. Observations: Changes in Snow, Ice and Frozen Ground[M]//IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007: 337-383.
[16]  Boer M, Koster E. Greenhouse-Impact on Cold-Climate Ecosystems and Landscapes[M]. Cremlingen-Destedt, Germany: Catena Verlag, 1992: 1-151.
[17]  The CEOP International Workshop. Coordinated Energy and Water-cycle Observations Project (CEOP) Strategic Implementation Plan[R/OL].
[18]  Brown J, Hinkel K M, Nelson F E. The circumpolar active layer monitoring (CALM) program: Research designs and initial results[J]. Polar Geography, 2000, 24(3): 166-258.
[19]  Anisimov O A, Shiklomanov N I, Nelson F E. Global warming and active-layer thickness: results from transient general circulation models[J]. Global and Planetary Change, 1997, 15(3-4): 61-77.
[20]  Stendel M, Christensen J H. Impact of global warming on permafrost conditions in a coupled GCM[J]. Geophysical Research Letters, 2002, 29(13), doi: 10.1029/2001GL014345.
[21]  Lawrence D M, Slater A G. A projection of severe near-surface permafrost degradation during the 21st century[J]. Geophysical Research Letters, 2005, 32(24), doi: 10.1029/2005GL025080.
[22]  Osterkamp T E. Characteristics of the recent warming of permafrost in Alaska[J]. Geophysical Research Letters, 2007, 112(F2), doi: 10.1029/2006JF000578.
[23]  M?lders N, Romanovsky V E. Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen grou-nd/permafrost component using observations at Barrow, Alaska[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D4), doi: 10.1029/2005JD005957.
[24]  Nicolsky D J, Romanovsky V E, Alexeev V A, et al. Improved modeling of permafrost dynamics in a GCM land-surface scheme[J]. Geophysical Research Letters, 2007, 34(8): doi: 10.1029/2007GL029525.
[25]  Zhang T, Barry R G, Gilichinsky D, et al. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia[J]. Climatic Change, 2001, 49(1-2): 41-76.
[26]  Cheng Guodong. Problems on zonation of high-altitude permafrost[J]. Acta Geographica Sinica, 1984, 39(2): 185-193.[程国栋. 我国高海拔多年冻土地带性规律之探讨[J]. 地理学报, 1984, 39(2): 185-193.]
[27]  Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2), doi: 10.1029/2006JF000631.
[28]  Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1729-1742.
[29]  Wang G, Hu H, Li T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 2009, 375(3-4): 438-449.
[30]  Wang G, Li Y, Hu H, et al. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet[J]. Hydrological Processes, 2008, 22(17): 3310-3320.
[31]  Cheng G. A roadbed cooling approach for the construction of Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2005, 42(2): 169-176.
[32]  Wu Q, Dong X, Liu Y, et al. Responses of permafrost on the Qinghai-Tibet Plateau, China, to climate change and engineering construction[J]. Arctic, Antarctic, and Alpine Research, 2007, 39(4): 682-687.
[33]  Wu Q, Zhang T. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13), doi: 10.1029/2007JD009539.
[34]  Wu Q, Liu Y. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2004, 38(2-3): 85-92.
[35]  Yang Jianping, Ding Yongjian, Chen Rensheng, et al. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers[J]. Journal of Mountain Science, 2004, 22(3): 278-285.[杨建平, 丁永建, 陈仁升, 等.长江黄河源区多年冻土变化及其生态环境效应[J].山地学报, 2004, 22(3): 278-285.]
[36]  Zhao L, Ping C-L, Yang D, et al. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China[J]. Global and Planetary Change, 2004, 43(1-2): 19-31.
[37]  Du Jun, Jian Jun, Hong Jianchang, et al. Responses of seasonal frozen soil to climate change on Tibet region from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 512-521.[杜军, 建军, 洪健昌, 等. 1961-2010年西藏季节性冻土对气候变化的响应[J]. 冰川冻土, 2012, 34(3): 512-521.]
[38]  Miller T W. Surface heat balance in simulations of permafrost behavior[J]. Journal of Energy Resources Technology, 1979, 101: 240-250.
[39]  Li Hongyi, Wang Jian, Hao Xiaohua. Influence of blowing snow on snow mass and energy exchanges in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1084-1090.[李弘毅, 王建, 郝晓华. 祁连山区风吹雪对积雪质能过程的影响[J]. 冰川冻土, 2012, 34(5): 1084-1090.]
[40]  Zhang Yinsheng, Yao Tandong, Pu Jianchen, et al. The features of hydrological processes in the Dongkemadi River Basin, Tanggula Pass, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1997, 19(3): 214-222.[张寅生, 姚檀栋, 蒲健辰, 等. 青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J]. 冰川冻土, 1997, 19(3): 214-222.]
[41]  Ohata T, Ueno K, Endoh N, et al. Meteorological observations in the Tanggula Mountains, Qingzang (Tibet) Plateau from 1989 to 1993[J]. Bulletin of Glacier Research, 1994, 12: 77-86.
[42]  Jansson P E, Karlberg L. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere Systems. Stockholm, Sweden: KTH, 2004.
[43]  Klemedtsson L, Jansson P E, Gustafsson D, et al. Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[J]. Biogeochemistry, 2008, 89: 61-79.
[44]  Lundmark A. Monitoring Transport and Fate of De-icing Salt in the Roadside Environment Modelling and Field Measurements[D]. PhD Thesis, Stockholm, Sweden: KTH, 2008: 1-47.
[45]  Keller T, Pielmeier C, Rixen C, et al. Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area[J]. Annals of Glaciology, 2004, 38: 314-318.
[46]  Mellander P E, Laudon H, Bishop K. Modelling variability of snow depths and soil temperatures in Scots pine stands[J]. Agricultural and Forest Meteorology, 2005, 133: 109-118.
[47]  Yang Yong, Chen Rensheng, Ji Xibin, et al. Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China[J]. Advances in Water Science, 2010, 21(1): 30-35.[阳勇, 陈仁升, 吉喜斌, 等. 黑河高山草甸冻土带水热传输过程[J]. 水科学进展, 2010, 21(1): 30-35.]
[48]  Hollesen J, Elberling B, Jansson P E. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland[J]. Global Change Biology, 2011, 17: 911-926.
[49]  Yang M, Yao T, Nelson F E, et al. Snow cover and depth of freeze-thaw on the Tibetan Plateau: a case study from 1997 to 1998[J]. Physical Geography, 2008, 29(3): 208-221.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133