全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

祁连山老虎沟12号冰川退缩对细菌优势种群影响的初步研究

DOI: 10.7522/j.issn.1000-0240.2013.0085, PP. 751-760

Keywords: 老虎沟12号冰川,退缩,细菌优势种群

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着全球冰川正在越来越多的地区融化,冰川微生物资源很可能会由于冰川退缩而未被人类所发现就已受到生存的威胁而濒危.以祁连山老虎沟12号冰川消融区和末端雪样及末端土样为研究对象,采用培养方法、分子鉴定,研究冰川雪样优势菌群在冰川末端土样的分布状况及生理生化指标变化情况,分析冰川细菌优势菌群在冰川退缩后适应非雪环境的能力.结果表明冰川末端雪样优势菌为1BW1和1BW2所代表的Pedobacter,该属在冰川消融区雪样和冰川末端土样中未分离到;冰川消融区雪样优势菌为2BW所代表的Acinetobacter,该属在冰川末端雪样中的数量较少,在冰川末端土样中的数量更少.不同采样位点16SrRNA序列相似性高的菌株其生理生化特征比相同采样位点的大.因此,冰川冰退缩可能会引发冰川雪样中的优势种群不能适应新环境而灭绝.应加强冰川细菌资源利用和保护的研究基础.

References

[1]  IPCC. Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2007.
[2]  Cárdenas M L, Gosling W D, Sherlock S C, et al. The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change[J]. Science, 2011, 331(6020): 1055-1058.
[3]  Thuiller W, Lavergne S, Roquet C, et al. Consequences of climate change on the tree of life in Europe[J]. Nature, 2011, 470(7335): 531-534.
[4]  Thomas J A, Telfer M G, Roy D B, et al. Comparative losses of British butterflies, birds and plants and the global extinction crisis[J]. Science, 2004, 303(5665):1879-1881.
[5]  Colwell R K, Brehm G, Cardelús C L, et al. Global warming, elevational range shifts and lowland biotic attrition in the wet tropics[J]. Science, 2008, 322(5899): 258-261.
[6]  Walther G R, Beissner S, Burga C A. Trends in the upward shift of alpine plants[J]. Journal of Vegetation Science, 2005, 16(5): 541-548.
[7]  Wilson R J, Gutiérrez D, Gutiérrez J, et al. Changes to the elevational limits and extent of species ranges associated with climate change[J]. Ecology Letters, 2005, 8(11): 1138-1146.
[8]  Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421: 37-42.
[9]  Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421: 57-60.
[10]  Kappelle M, van Vuuren M M I, Baas P. Effects of climate change on biodiversity: a review and identification of key research issues[J]. Biodiversity and Conservation, 1999, 8(10): 1383-1397.
[11]  Thuiller W. Biodiversity: Climate change and the ecologist[J]. Nature, 2007, 448: 550-552.
[12]  Yao Tandong, Yao Zhijun. Impacts of glacial retreat on runoff on Tibetan Plateau[J]. Chinese Journal of Nature, 2010, 32(1): 4-8.[姚檀栋,姚治君. 青藏高原冰川退缩对河水径流的影响[J]. 自然杂志, 2010, 32(1): 4-8.]
[13]  Yoshitake S, Uchida M, Nakatsubo T, et al. Characterization of soil microflora on a successional glacier foreland in the high Arctic on Ellesmere Island, Nunavut, Canada using phospholipid fatty acid analysis[J]. Polar Bioscience, 2006, 19: 73-84.
[14]  Philippot L, Tscherko D, Bru D, et al. Distribution of high bacterial taxa across the chronosequence of two alpine glacier forelands[J]. Microbial Ecology, 2011, 61(2): 303-312.
[15]  Schütte U M E, Abdo Z, Foster J, et al. Bacterial diversity in a glacier foreland of the high Arctic[J]. Molecular Ecology, 2010, 19(S1): 54-66.
[16]  Schmidt S K, Reed S C, Nemergut D R, et al. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils[J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1653): 2793-2802.
[17]  Yue Jun, Liu Guangxiu, Zhang Gaosen, et al. Changes in soil properties and culturable bacteria diversity in Zhadang Glacier foreland[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1180-1185.[岳君,刘光,章高森,等. 念青唐古拉山扎当冰川退缩前沿土壤性质与可培养细菌多样性变化[J]. 冰川冻土, 2010, 32(6): 1180-1185.]
[18]  Zhang Gaosen, Zhang Wei, Liu Guangxiu, et al. Distribution of aerobic heterotrophic bacteria managed by environment factors in glacier foreland[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 965-971.[章高森,张威,刘光,等. 环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布[J]. 冰川冻土, 2012, 34(4): 965-971.]
[19]  Wu Xiukun, Mao Wenliang, Tai Xisheng, et al. Progress in studies of microbial ecology in glacier foreland[J]. Journal ofGlaciology and Geocryology, 2013, 35(1): 217-223.[伍修锟,毛文梁,台喜生,等. 冰川前沿裸露地微生物生态学研究进展[J]. 冰川冻土, 2013, 35(1): 217-223.]
[20]  Nemergut D R, Anderson S P, Cleveland C C, et al. Microbial community succession in an unvegetated, recently deglaciated soil[J]. Microbial Ecology, 2007,53(1): 110-122.
[21]  Thomas-Hall S R, Turchetti B, Buzzini P, et al.Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: Mrakia robertiisp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov.[J]. Extremophiles, 2010, 14(1): 47-59.
[22]  Qin Dahe, Yao Tandong, Ding Yongjian, et al. English-Chinese Dictionary of Cryospheric Sciences[M]. Beijing: China Meteorological Press, 2012: 4, 127.
[23]  Du Wentao, Qin Xiang, Liu Yushuo, et al. Variation of the Laohugou Glacier No. 12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 373-379.[杜文涛,秦翔,刘宇硕,等. 1958-2005年祁连山老虎沟12号冰川变化特征研究[J]. 冰川冻土, 2008, 30(3): 373-379.]
[24]  Liu Yushuo, Qin Xiang, Du Wentao, et al. Analysis of the movement features of the Laohugou Glacier No. 12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 475-479.[刘宇硕,秦翔,杜文涛,等. 祁连山老虎沟12号冰川运动特征分析[J]. 冰川冻土, 2010, 32(3): 475-479.]
[25]  Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology, 1996, 62(2): 461-468.
[26]  Miteva V I, Sheridan P P, Brenchley J B. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice core[J]. Applied and Environmental Microbiology, 2004, 70(2): 202-213.
[27]  Ma Yun, Xie Zhanling, Li Deying, et al. The research on the diversity of endophytic bacteria in Qinghai-Tibet plateau medicinal plant[J]. Biotechnology Bulletin, 2010(6): 234-239.
[28]  Thompson J D, Gibson T J, Plewniak F, et al.The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882.
[29]  Zhou Deqing. Microbiology Experiment Course[M]. 2nd Edition. Beijing: Higher Education Press, 2006: 29-31.
[30]  Dong Xiuzhu, Cai Miaoying. Systematic Identification Manual for Common Bacteria[M]. Beijing: Science Press, 2001: 370-385.
[31]  Bowman J P, McCammon S A, Brown M V, et al.Diversity and association of psychrophilic bacteria in Antarctic sea ice[J]. Applied and Environmental Microbiology, 1997, 63(8): 3068-3078.
[32]  Chang H-W, Bae J-W, Nam Y-D,et al. Arthrobacter subterraneussp. nov., isolated from deep subsurface water of the South Coast of Korea[J]. Journal ofMicrobiology and Biotechnology, 2007, 17(11): 1875-1879.
[33]  Liu Y, Yao T, Jiao N, et al. Bacterial diversity in the snow over Tibetan Plateau Glaciers[J]. Extremophiles, 2009, 13: 411-423.
[34]  Xiang S R, Yao T D, An L Z, et al.Bacterial diversity in Malan ice core from the Tibetan Plateau[J]. Folia Microbiologica, 2004, 49(3): 269 275.
[35]  Xiang S, Yao T, An L, et al. 16S rRNA sequences and differences in bacteria isolated from Muztagh Ata glacier at increasing depths[J]. Applied and Environmental Microbiology, 2005, 71(8): 4619 4627.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133