全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析

DOI: 10.7522/j.issn.1000-0240.2013.0081, PP. 710-722

Keywords: CMORPH,TMPA,3B42,v6,APHRODITE,ITPCAS,叶尔羌河上游,降水

Full-Text   Cite this paper   Add to My Lib

Abstract:

分析了2003-2009年基于卫星观测的降水数据CMORPH、TMPA3B42v6、中国科学院青藏高原研究所的融合数据ITPCAS和基于地面台站的APHRODITE(2003-2007)四套降水数据集在叶尔羌河上游流域的时空分布特征,并以这四套降水数据为驱动,利用VIC分布式水文模型对叶尔羌河上游流域的降水径流进行模拟.结果表明在空间分布上,四套降水资料在叶尔羌河上游流域的差异较大,ITPCAS的空间分布与流域冰川的分布较一致,基于冰川区即为大降水区的基本认知,初步认为ITPCAS的空间分布比较合理;其次是TMPA3B42v6和APHRODITE;在流域的年降水量和季节分配量上,由于缺乏高海拔地区的实测降水资料,无法准确回答各套降水资料在量级上是否合理;在时间序列上,四套降水资料与流域站点降水(库鲁克栏杆站和塔什库尔干站的平均降水)存在着不同程度的差异.但从整体上看,CMORPH数据在一定程度上能够反映流域的月降水变化过程,而APHRODITE和ITPCAS只能在个别年份对流域的降水描述较好;在径流模拟上,卫星降水数据CMORPH显示了作为水文模型输入数据的较大潜力;而其他降水资料在叶尔羌河径流模拟中,与实测径流在量和季节分配上可能存在较大偏差.

References

[1]  Wu Lu, Zhai Panmao. Assessment of CMORPH and TR-MM3B42 and their usability in the warm seasons hour scale precipitation of the Qinghai-Tibet Plateau and its east Sichuan Basin[C]//28th Chinese Meteorological Society Annual Meeting-S1: The Fourth Meteorological Detection Technology Seminar, 2011.[吴璐, 翟盘茂. CMORPH和TRMM3B42在青藏高原及其以东的四川盆地暖季小时尺度降水分析的可用性评估[C]. 第28届中国气象学会年会—S1第四届气象综合探测技术研讨会, 2011.]
[2]  Getirana A C V, Espinoza J C V, Ronchail J, et al. Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin[J]. Journal of Hydrology, 2011, 404(3-4): 304-322.
[3]  Schulz J, Albert P, Behr H D, et al.Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF)[J]. Atmospheric Chemistry and Physics, 2009, 9(5): 1687-1709.
[4]  Dinku T, Chidzambwa S, Ceccato P, et al.Validation of high-resolution satellite rainfall products over complex terrain[J]. International Journal of Remote Sensing, 2008. 29(14): 409714110.
[5]  Zhou Tianjun, Yu Rucong, Chen Haoming, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations[J]. Journal of Climate, 2008, 21(16): 3997-4010.
[6]  Bai Aijuan, Liu Changhai, Liu Xiaodong, et al. Diurnal variation of summer rainfall over the Tibetan Plateau and it's neighboring regions reveled by TRMM multi-satellite precipitation analysis[J]. Chinese Journal of Geophysics, 2008, 51(3): 704-714.[白爱娟, 刘长海, 刘晓东, 等. TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J]. 地球物理学报, 2008, 51(3): 704-714.]
[7]  Han Zhenyu, Zhou Tianjun. Assessing the quality of APHRODITE high-resolution daily precipitation dataset over contiguous China[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(2): 361-373.[韩振宇, 周天军. APHRODITE高分辨率逐日降水资料在中国大陆地区的适用性[J]. 大气科学, 2012, 36(2): 361-373.]
[8]  Li Jian, Yu Rucong, Chen Haoming, et al. Evaluation and analyses of summer rainfall over mainland China in three reanalysis datasets[J]. Meteorological Monthly, 2010, 36(12): 1-9.[李健, 宇如聪, 陈昊明, 等. 对三套再分析资料夏季降水量与中国台站降水量的比较[J]. 气象, 2010, 36(12): 1-9.]
[9]  Chen Yaning, Wang Zhichao. An introduction of physical geography in the drainage area of the Yarkant River[M]//Study on the Glacier Lake Outburst Floods of the Yarkant River, Karakorum Mountains. Beijing: Science Press, 1990: 1-10.
[10]  Chen Yaning, Xu Changchun, Hao Xingming, et al. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China[J].Quaternary International, 2009, 208(53): 53-61.
[11]  Shangguan Donghui, Liu Shiyin, Ding Yongjian, et al. Glacier changes during the last forty years in the Tarim interior river basin, northwest China[J]. Progress in Natural Science, 2009, 19(6): 727-732.
[12]  Yilmaz K K, Hogue T S, Hsu K L, et al. Intercomparison of rain gauge, radar, and satellite-base precipitation estimates with emphasis on hydrologic forecasting[J]. Journal of Hydrometeorology, 2005, 6: 497-517.
[13]  Wilk J, Kniveton D, Andersson L, et al. Estimating rainfall and water balance over the Okavango River Basin for hydrological applications[J]. Journal of Hydrology, 2006, 331(1-2): 18-29.
[14]  Liang Xu, Lettenmaier Dennis P, Wood Eric F,et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal Geophysical Research, 1994, 99: 14415-14428.
[15]  Liang Xu, Lettenmaier D P, Wood E F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model[J]. Journal of Geophysical Research, 1996, 101: 21403-21422.
[16]  Zhou Yuchao, Chen Yaning, Wang Zhichao. The runoff characteristics in the Yarkant River[M]//Study on the Glacier Lake Outburst Floods of the Yarkant River, Karakorum Mountains. Beijing: Science Press, 1990:12-24
[17]  Joyce R J, Janowiak J E, Xie Pingping. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
[18]  Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38-55.
[19]  Yatagai A, Kamiguchi K, Arakawa O, et al.APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. American Meteorological Society, 2012, 9: 1401-1415.
[20]  He Jie. Development of Surface Meteorological Datasets of China with High Temporal and Spatial Resolution[D]. Beijing, China: Institute of Tibetan Plateau Research, China Academy of Science, 2011.[何杰. 中国区域高时空分辨率地面气象要素数据集的建立[D]. 北京: 中国科学院青藏高原研究所, 2011.]
[21]  Yang Hong, Adler R F, Huffman G. An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets[J]. IEEE Transactions on Geosciences and Remote Sensing, 2007, 45(6): 1671-1680.
[22]  Yatagai A, Arakawa O, Kamiguchi K, et al. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Science Online Letters on the Atmosphere, 2009,5: 137-140.
[23]  Chen Yingying, Yang Kun, He Jie, et al. Improving land surface temperature modeling for dry land of China[J]. Journal of Geophysical Research, 2011, doi: 10.1029/2011JD015921.
[24]  Liang Xu, Xie Zhenghui. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models[J]. Advances in Water Resources, 2001, 24(18): 1173-1192.
[25]  Song Xingyuan, Yu Haiyan, Zhang Liping, et al. Application of VIC land surface hydrological model in flow simulation of Bailian River basin[J]. Journal of China Hydrology, 2007, 27(2): 40-44.[宋星原, 余海艳, 张利平, 等. VIC陆面水文模型在白莲河流域径流模拟中的应用[J]. 水文, 2007, 27(2): 40-44.]
[26]  Zhang Liping, Chen Xiaofeng, Zhang Xiaolin, et al. A compare application research of VIC model and SWAT model in the mid-small valley flow simulation[J]. Resources and Environment in the Yangtze Basin, 2009, 18(8): 745-752.[张利平, 陈小凤, 张晓琳, 等. VIC模型与SWAT模型在中小流域径流模拟中的对比研究[J]. 长江流域资源与环境, 2009, 18(8): 745-752.]
[27]  Hu Caihong, Guo Shenglian, Peng Dingzhi, et al. The application of VIC in the simulation[J]. Yellow River, 2005, 27(10): 22-28.[胡彩虹, 郭生练, 彭定志, 等. VIC模型在流域径流模拟中的应用[J]. 人民黄河, 2005, 27(10): 22-28.]
[28]  Jin Junliang, Wang Guoqing, Liu Cuishan, et al. Application of large scale distributed hydrological model to runoff simulation in Jialingjiang River Basin[J]. Journal of water recourses and water engineering, 2012,23(1): 55-63.[金君良, 王国庆, 刘翠善, 等. 大尺度分布式水文模型VIC在嘉陵江流域径流模拟中的应用[J]. 水资源与水工程学报, 2012, 23(1): 55-63.]
[29]  Jin Junliang, Lu Guihua, Wu Zhiyong. Application research of VIC model to add and semi-arid region of Northwest China[J]. International Journal Hydroelectric Energy, 2010, 28(1): 12-14.[金君良, 陆桂华, 吴志勇. VIC模型在西北干旱半干旱地区的应用研究[J]. 水电能源科学, 2010, 28(1): 12-14.]
[30]  Liu Zhaofei, Xu Zongxue. Analysis of hydrological variables based on the VIC-3L model in headwater catchment of the Tarim River Basin[J]. Journal of Beijing Normal University (Natural Science), 2010, 46(3): 350-357.[刘兆飞, 徐宗学. 基于VIC-3L的塔里木河流域源流区水文要素特征分析[J]. 北京师范大学学报(自然科学版), 2010, 46(3): 350-357.]
[31]  Su Fengge, Xie Zhenghui. Assessment model study on the effect of runoff by climate change in China[J]. Progress in Natural Science, 2003, 13(05): 502-507.[苏凤阁, 谢正辉. 气候变化对中国径流影响的评估模型研究[J]. 自然科学进展, 2003, 13(05): 502-507.]
[32]  Yang Xingguo, Qin Dahe, Qin Xiang. Progress in the study of interaction between ice/snow and atmosphere[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 392-402.[杨兴国,秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2): 392-402.]]33] Yang Huian, An Ruizhen. Glacier Inventory of China, V: Karakorum Mountains (Drainage Basin of the Yarkant River)[M]. Beijing: Science Press, 1989: 1-21.
[33]  Zou Han, Wang Wei, Yan Jiangzheng.The study of Karakoram precipitation[M]//The Glacier and Environment in Yarkant River, Karakorum Mountains. Beijing: Science Press, 1991: 123-130.
[34]  Gao Xin, Zhang Shiqiang, Ye Baisheng, et al. Glacier runoff change in the upper stream of Yarkant River and its impact on river runoff during 1961-2006[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 445-453.[高鑫, 张世强, 叶柏生, 等. 1961-2006年叶尔羌河上游流域冰川融水变化及其对径流的影响[J]. 冰川冻土, 2010, 32(3): 445-453.]
[35]  Wu Yongping, Wang Chenghai, Shen Yongping. Spatiotemporal evolution of precipitation over Tarim River Basin during 1960-2009: characteristics and reasons[J]. Journal of Glaciology and Geocryology, 2011, 33(06): 1268-1273.[吴永萍, 王澄海, 沈永平. 1960-2009年塔里木河流域降水时空演化特征及原因分析[J]. 冰川冻土, 2011, 33(06): 1268-1273.]
[36]  Shen Yongping, Liang Hong. High precipitation in glacial region of high mountains in High Asia: Possible cause[J]. Journal of Glaciology and Geocryology, 2004, 26(6): 806-809.[沈永平, 梁红. 高山冰川区大降水带的成因探讨[J]. 冰川冻土, 2004, 26(6): 806-809.]
[37]  Cheng Zhonglei, Qu Jilong. Cognition and exploration of meteoric water for Yarkant River basin[OL]. http://www.cngbn.com/?action-viewthread-tid-60923.[程仲雷, 瞿继龙. 浅谈对叶尔羌河流域大气水的认识与探索[OL].
[38]  Zhao Chengyi, Shi Fengzhi, Shengyu, et al.Regional differentiation characteristics of precipitation changing with altitude in Xinjiang Region in recent 50 years[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1203-1213.[赵成义, 施枫芝, 盛钰, 等. 近50 a来新疆降水随海拔变化的区域分异特征[J]. 冰川冻土, 2011, 33(6): 1203-1213.]
[39]  Gao Yanchun, Liu Maofeng. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2013, 17(2): 837-849.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133