全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

青藏直流联网工程多年冻土区砼灌注桩基础长期热稳定性预测研究

DOI: 10.7522/j.issn.1000-0240.2013.0136, PP. 1209-1218

Keywords: 青藏直流,灌注桩,数值模拟,热稳定性,多年冻土

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于冻土工程而言,基础热稳定性是决定工程稳定性及服役性能的关键.为预测±400kV青藏直流联网工程多年冻土区砼灌注桩基础的长期热稳定性,建立了考虑相变问题的二维数值传热分析模型,应用有限元方法研究了气候变暖背景下,不同年平均地温、不同含冰量条件下灌注桩基础传热特性和长期热稳定性.结果表明单桩对周围土体的热影响范围是桩径的4~5倍,桩基周围融化深度随时间推移而增大,在低含冰量的高温和低温冻土区桩基50a后最大融化深度分别为6.65m和3.05m,所对应的冻土上限平均融化速率分别为9.5cm·a-1和3.6cm·a-1;在高含冰量的高温和低温冻土区50a后最大融化深度分别为5.25m和2.77m,其冻土上限平均融化速率分别为6.7cm·a-1和2.0cm·a-1.在气候变暖背景下,桩基上部周围冻土逐渐升温、融化,50a后,在低含冰量的高温冻土区桩基由于融化深度增大导致有效冻结长度减少28%,在高含冰量的高温冻土区桩基的有效冻结长度减少15%,桩侧冻结力随之相应减小.该研究对于冻土区桩基长度设计、桩基工程的维护和冻土稳定性评价提供了重要的科学依据.

References

[1]  Li Guoyu, Yu Qihao, Ma Wei, et al. Impacts of permafrost mean annual ground temperature and ice content on thermal regime of pile foundation of Qinghai-Tibet Power Transmission Line[J]. Advanced Materials Research, 2013, 610/613: 2832-2839.
[2]  Yu Qihao, Wen Zhi, Ding Yansheng, et al. Monitoring the tower foundations in the permafrost regions along the Qinghai-Tibet DC Transmission Line from Qinghai Province to Tibetan Autonomous Region[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1165-1172. [俞祁浩, 温智, 丁燕生, 等. 青藏直流线路冻土地基监测研究[J]. 冰川冻土, 2012, 34(5): 1165-1172.]
[3]  Xu Chunhua, Xu Xueyan, Qiu Mingguo. Numerical analysis for formation time of bearing capacity of cast-in-place concrete pile in permafrost regions of Mohe County[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1190-1193. [徐春华, 徐学燕, 邱明国. 漠河多年冻土区砼灌注桩承载力形成时间数值分析[J]. 岩土工程学报, 2005, 27(10): 1190-1193.]
[4]  Lu Xianlong, Cheng Yongfeng. Current status and prospect of transmission tower foundation engineering in China[J]. Electric Power Construction, 2005, 26(11): 25-27;34. [鲁先龙, 程永锋. 我国输电线路基础工程现状与展望[J]. 电力建设, 2005, 26(11): 25-27;34.]
[5]  Duan Xili, Naterer G F. Ground thermal response to heat conduction in a power transmission tower foundation[J]. Heat Mass Transfer, 2008, 44: 547-558.
[6]  Duan Xili, Naterer G F. Heat conduction with seasonal freezing and thawing in an active layer near a tower foundation[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 2068-2078.
[7]  Weaver J S, Morgenste N R. Pile design in permafrost[J]. Canadian Geotechnical Journal, 1981, 18: 357-370.
[8]  Targulyan Y O, Gokhman M R, Fedorovich D I, et al. Improvement of methods of constructing pile foundations in permafrost soils[J]. Soil Mechanics and Foundation Engineering, 1994, 31(4): 28-30.
[9]  Johnson J B, Buska J S. Measurement of Frost Heave Forces on H-Piles and Pipe Piles, CRREL Report 88-21. Hanover, NH: CRREL, 1988.
[10]  Foriero A, Ladanyi B. The use of fractional exponential creep kernels for long-term behavior of laterally loaded piles in permafrost[J]. Journal of Engineering Mathematics, 1992, 26(2): 281-295.
[11]  Zhang Jianming, Zhu Yuanlin, Zhang Jiayi. Experimental stu-dy on settlement of model piles in frozen soil under dynamic loading[J]. Science in China (Series D: Earth Sciences), 1999, 42(S1): 30-37. [张建明, 朱元林, 张家懿. 动荷载下冻土中模型桩的沉降试验研究[J]. 中国科学(D辑: 地球科学), 1999, 29(S1): 27-33.]
[12]  Cheng Yongfeng, Lu Xianlong, Liu Huaqing, et al. Model test study on pile foundation of 110 kV transmission line of Qinghai-Tibet Railway in frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(S1): 4378-4382. [程永锋, 鲁先龙, 刘华清, 等. 青藏铁路110 kV输电线路冻土桩基模型试验研究[J]. 岩石力学与工程学报, 2004, 23(S1): 4378-4382.]
[13]  Wu Yongping, Guo Chunxiang, Pan Weidong, et al. Influences of refreezing process of ground on bearing capacity of single pile and bridge construction in permafrost[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4229-4233. [吴永平, 郭春香, 潘卫东, 等. 冻土区桩基回冻过程对单桩承载力和桥梁施工的影响分析[J]. 岩石力学与工程学报, 2004, 23(24): 4229-4233.]
[14]  Wu Yongping, Guo Chunxiang, Zhao Shiyun, et al. Influence of casting temperature of single pile on temperature field of ground in permafrost of Qinghai-Tibet Plateau[J]. Journal of the China Railway Society, 2004, 26(6): 81-85. [吴永平, 郭春香, 赵世运, 等. 青藏高原冻土区灌注桩入模温度对地温场的影响分析[J]. 铁道学报, 2004, 26(6): 81-85.]
[15]  Wu Yongping, Su Qiang, Guo Chunxiang, et al. Nonlinear analysis of ground refreezing process for pile group bridge foundation in permafrost[J]. China Civil Engineering Journal, 2006, 29(2): 78-84. [吴永平, 苏强, 郭春香, 等. 冻土区桥梁群桩基础地基回冻过程的非线性分析[J]. 土木工程学报, 2006, 29(2): 78-84.]
[16]  Guo Chunxiang, Yang Fanjie, Wu Yongping, et al. Influences of concrete hydration heat on the melting and refreezing processes of surrounding rock of tunnels in the permafrost region[J]. Journal of the China Railway Society, 2011, 33(11): 106-110. [郭春香, 杨凡杰, 吴永平, 等. 混凝土水化热对寒区隧道围岩融化及回冻过程的影响[J]. 铁道学报, 2011, 33(11): 106-110.]
[17]  Khrustalev L N, Pustovoit G P, Kozlov A N. Prediction of new formation of frozen soils and stability assessment of pile foundations in gas fields of Western Siberia[J]. Soil Mechanics and Foundation Engineering, 1996, 33(3): 115-118.
[18]  Song Wenhua. Study on transmission and substation foundation frost heaving prevention[J]. Electric Power, 1996, 29(1): 46-48. [宋文华. 输变电基础防冻胀的研究[J]. 中国电力, 1996, 29(1): 46-48.]
[19]  Lyazgin A L, Ostroborodov S V, Pustovoit G P, et al. Leveling of pile foundations supporting electric transmission lines by temperature control of bed soils[J]. Soil Mechanics and Foundation Engineering, 2004, 41(1): 23-26.
[20]  Lyazgin A L, Lyashenko V S, Ostroborodov S V, et al. Experience in the prevention of frost heave of pile foundations of transmission towers under northern conditions[J]. Power Technology and Engineering, 2004, 38(2): 124-126.
[21]  Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000: 71-72.
[22]  Liang Bo, Chen Xingchong. The significance, the key technical problems and the mechanical problems of Qinghai-Tibetan Railway[J]. Engineering Mechanics, 2004, 21(S1): 139-149. [梁波, 陈兴冲. 青藏铁路的重要意义、技术难点及力学问题[J]. 工程力学, 2004, 21(S1): 139-149.]
[23]  Xiong Wei, Liu Minggui, Zhang Qiheng, et al. Temperature distribution along piles in permafrost regions[J]. Rock and Soil Mechanics, 2009, 30(6): 1658-1664. [熊炜, 刘明贵, 张启衡, 等. 多年冻土区桩基温度场研究[J]. 岩土力学, 2009, 30(6): 1658-1664.]
[24]  Tang Liyun, Yang Gengshe, Xi Jiami. Analysis on thermal stability for construction of pile foundation in cold region[J]. Road Machinery & Construction Mechanization, 2009, 26(9): 62-64. [唐丽云, 杨更社, 奚家米. 冻土地区桩基础施工热稳定性分析[J]. 筑路机械与施工机械化, 2009, 26(9): 62-64.]
[25]  Yan Fuzhang, Li Peng, Cheng Dongxing. Principal problems and solutions of the foundation engineering in the high-attitude permafrost region[J]. Electric Power, 2012, 45(12): 34-41. [严福章, 李鹏, 程东幸. 高海拔多年冻土区基础工程主要工程问题及对策[J]. 中国电力, 2012, 45(12): 34-41.]
[26]  Jia Xiaoyun, Zhu Yongquan, Li Wenjiang. Study of ground temperature field during pile foundation construction in permafrost regions[J]. Rock and Soil Mechanics, 2004, 25(7): 1139-1142. [贾晓云, 朱永全, 李文江. 高原冻土区桩基施工温度场研究[J]. 岩土力学, 2004, 25(7): 1139-1142.]
[27]  Tang Liyun, Yang Gengshe, Rang Yanyan, et al. Effects of cement hydration heat on pile foundation in permafrost regions[J]. Journal of Xi'an University of Science and Technology, 2011, 31(1): 28-32. [唐丽云, 杨更社, 让艳艳, 等. 水化热对冻土地区桩基热影响分析[J]. 西安科技大学学报, 2011, 31(1): 28-32.]
[28]  Qian Jin, Liu Houjian, Yu Qihao, et al. A discussion on permafrost engineering characteristics along Qinghai-Tibet 500 kV power transmission line and countermeasures[J]. China Rural Water and Hydropower, 2009(4): 106-111.
[29]  Zhang Shuliang, Gao Feng, Ning Baoying, et al. Analysis on the construction practices of transmission projects in permafrost regions in Canada and United States[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 201-207. [张树良, 高峰, 宁宝英, 等. 加拿大、美国多年冻土地区输电工程建设经验浅析[J]. 冰川冻土, 2013, 35(1): 201-207.]
[30]  Wang Jinliang, Liao Shengming. Numerical heat transfer analysis and optimization for thermosyphons coupled with natural ground in permafrost regions[J]. China Railway Science, 2006, 27(6): 1-6. [王金良, 廖胜明. 多年冻土区天然地面耦合热管的数值传热分析及优化[J]. 中国铁道科学, 2006, 27(6): 1-6.]
[31]  Chen Jiding, Kong Yaping, He Ziwen. Observation and research of artificial vegetation growth on roadside slopes in the permafrost regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 704-709. [陈济丁, 孔亚平, 何子文. 青藏高原多年冻土地区公路边坡植被生长的观测与研究[J]. 冰川冻土, 2008, 30(4): 704-709.]
[32]  Lai Yuanming, Zhang Mingyi, Liu Zhiqiang, et al. Numerical analysis for cooling effect of open boundary ripped-rock embankment on Qinghai-Tibetan railway[J]. Science in China(Series D: Earth Sciences), 2006, 49(7): 764-772. [赖远明, 张明义, 刘志强, 等. 开放边界条件下青藏铁路抛石路基的降温效果分析[J]. 中国科学(D辑: 地球科学), 2005, 35(6): 578-585.]
[33]  Liu Huanbao, Zhang Xifa, Zhao Yimin, et al. Frozen soil thermal conductivity determined by using heat-flow meter: Simulation experiment and result analysis[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1127-1131. [刘焕宝, 张喜发, 赵意民, 等. 冻土导热系数热流计法模拟试验及成果分析[J]. 冰川冻土, 2011, 33(5): 1127-1131.]
[34]  Liu Jiankun, Tian Yahu. Numerical studies for the thermal regime of a roadbed with insulation on permafrost[J]. Cold Regions Science and Technology, 2002, 35(1): 1-13.
[35]  Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of Frozen Soil[M]. Beijing: Science Press, 2010: 75-82. [徐学攵祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010: 75-82.]
[36]  Ding Jingkang, Han Longwu, Xu Bingkui, et al. Permafrost and Railway Engineering[M]. Beijing: China Railway Publishing House, 2011: 1-427.[丁靖康, 韩龙武, 徐兵魁, 等. 多年冻土与铁路工程[M]. 北京: 中国铁道出版社, 2011: 1-427.]
[37]  Qin Dahe, Ding Yihui, Wang Shaowu, et al. A study of environment change and its impacts in western China[J]. Earth Science Frontiers, 2002, 9(2): 321-328. [秦大河, 丁一汇, 王绍武, 等. 中国西部环境演变及其影响研究[J]. 地学前缘, 2002, 9(2): 321-328.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133