Houghton J H, Ding Yihui, Griggs D J, et al. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2001.
[2]
Wang Mingxing. Atmospheric Chemistry [M]. Beijing: China Meteorological Press, 1991: 94-112. [王明星. 大气化学[M]. 北京: 气象出版社, 1991: 94-112.]
[3]
Christensen T R, Jonasson S, Callaghan T V, et al. Carbon cycling and methane exchange in Eurasian tundra ecosystems[J]. AMBIO, 1999, 28(3): 239-244.
[4]
Fung I, John J, Lerner J, et al. Three-dimensional model synthesis of the global methane cycle[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D7): 13033-13065.
[5]
King G M, Roslev P, Skovgaard H. Distribution and rate of methane oxidation in sediments of the Florida Everglades[J]. Applied and Environmental Microbiology, 1990, 56: 2902-2911.
[6]
King G M. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation [J]. Applied and Environmental Microbiology, 1994, 60: 3220-3227.
[7]
Lombardi J E, Epp M A, Chanton J P. Investigation of the methyl fluoride technique for determining rhizospheric methane oxidation[J]. Biogeochemistry, 1997, 36: 153-172.
[8]
Schipper L A, Reddy K R. Determination of methane oxidation in the rhizosphere of Sagittaria lancifolia using methyl fluoride[J]. Soil Science Society of America Journal, 1996, 60: 611-616.
[9]
Frenzel P, Bosse U. Methyl fluoride, an inhibitor of methane oxidation and methane production[J]. FEMS Microbiology Ecology, 1996, 21: 25-36.
[10]
Jin Huijun, Cheng Guodong, Xu Baiqing, et al. Study on CH4 Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511. [张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511.]
[11]
Liu Guangsheng, Wang Genxu, Bai Wei, et al. Response of heat condition within active layer in swamp meadow on the Tibetan Plateau to warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 555-562. [刘光生, 王根绪, 白炜, 等. 青藏高原沼泽草甸活动层土壤热状况对增温的响应[J]. 冰川冻土, 2012, 34(3): 555-562.]
[12]
Yang Jian, Ma Yaoming. Soil temperature and moisture features of typical underlying surface in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 813-820. [杨健, 马耀明. 青藏高原典型下垫面的土壤温湿特征[J]. 冰川冻土, 2012, 34(4): 813-820.]
[13]
Wang Z P, Lindau C W, Delaune R D, et al. Methane emission and entrapment in flooded rice soils as affected by soil properties[J]. Biology and Fertility of Soils, 1993, 16: 163-168.
[14]
Li Jun, Tong Xiaojuan, Yu Qiang. Methane uptake and oxidation by unsaturated soil[J]. Acta Ecologica Sinica, 2005, 25(1): 141-147. [李俊, 同小娟, 于强. 不饱和土壤CH4的吸收与氧化[J]. 生态学报, 2005, 25(1): 141-147.]
[15]
Liu Lingling, Liu Yunfen, Wen Xuefa, et al. CH4 Dunfield P, Knowles R. Kinetics of methane oxidation by nitrate, nitrite and ammonium in a humisol[J]. Applied and Environmental Microbiology, 1995, 61: 3129-3135.
[16]
Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37: 25-50.
[17]
Borken W, Brumme R, Xu Y-J. Effects of prolonged soil drought on CH4oxidation in a temperate spruce forest[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D6): 7079-7088.
[18]
Davidson E A, Nepstad D C, Ishida F Y. Effects of an experimental drought and recovery on soil emission of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest[J]. Global Change Biology, 2008, 14: 2582-2590.
[19]
Liu Xiaofei, Yang Zhijie, Xie Jinsheng, et al. Effects of environmental change on the oxidation of methane in forest soils[J]. Journal of Subtropical Resources and Environment, 2010, 5(4): 78-84. [刘小飞, 杨智杰, 谢锦升, 等. 环境变化对森林土壤CH4氧化的影响[J]. 亚热带资源与环境学报, 2010, 5(4): 78-84.]
[20]
Ding Weixin, Cai Zucong. Effect of temperature on atmospheric CH4oxidation in soils[J]. Chinese Journal of Ecology, 2003, 22(3): 54-58. [丁维新, 蔡祖聪. 温度对土壤氧化大气CH4的影响[J]. 生态学杂志, 2003, 22(3): 54-58.]
[21]
Adamsen A P S, King G M. Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation, and responses to water and nitrogen [J]. Applied and Environmental Microbiology, 1993, 59: 485-490.
[22]
Price S J, Sherlock R R, Keliher F M, et al. Pristine New Zealand forest soil is a strong methane sink[J]. Global Change Biology, 2003, 10: 16-26.