全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2015 

1985-2013年黑河中游流域地下水位动态变化特征

DOI: 10.7522/j.issn.1000-0240.2015.0053, PP. 461-469

Keywords: 黑河中游,地下水位,分水,地下水系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

在气候变化和人类活动的影响下,黑河流域地表水和地下水的时空分布特征发生了很大变化.研究水系统演化及其驱动机制对流域水资源可持续管理非常关键.基于甘肃河西黑河中游流域地下水位动态、水文气象、土地利用和灌溉统计数据,研究了1985-2013年黑河中游流域地下水位时空变化.结果表明地表水的不合理分配和耕地的扩展导致了地下水的过量开采和地下水位的剧烈变化.1985-2004年区域地下水位以下降为主;2005-2013年呈现下降和回升两极发展趋势,冲洪积扇群带地下水最大下降达17.41m,而黑河干流沿岸地下水位最大回升了3.3m,地下水埋深普遍增加了1.0~3.0m.尽管地下水位在2005-2013年表现出回升趋势,但干流中游盆地地下水系统处于严重负均衡状态,制定合理的“生态分水”方案和水资源综合管理规划非常紧迫.

References

[1]  Ding Hongwei, Hu Xinglin, Lan Yongchao, et al. Characteristics and conversion of water resources in the Heihe River basin[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1460-1469. [丁宏伟, 胡兴林, 蓝永超, 等. 黑河流域水资源转化特征及其变化规律[J]. 冰川冻土, 2012, 34(6): 1460-1469.]
[2]  Zhang Fang, Dong Min, Wu Tongwen. Evaluation of ENSO features simulations as done by CMIP5 models[J]. Acta Meteorologica Sinica, 2014, 72(1): 30-48. [张芳, 董敏, 吴统文. CMIP5模式对ENSO现象的模拟能力评估[J]. 气象学报, 2014, 72(1): 30-48.]
[3]  Zhang Yinghua, Wu Yanqing. Analysis of groundwater replenishment in the middle reaches of Heihe River[J]. Journal of Desert Research, 2009, 29(2): 370-375. [张应华, 仵彦卿. 黑河流域中游盆地地下水补给机理分析[J]. 中国沙漠, 2009, 29(2): 370-375.]
[4]  Archer D R, Forsythe N, Fowler H J, et al. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions[J]. Hydrology and Earth System Sciences, 2010, 14: 1669-1680.
[5]  Zhong Fanglei, Xu Zhongmin, Cheng Huaiwen, et al. The history of water resources utilization and management in the middle reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 236-245. [钟方雷, 徐中民, 程怀文, 等. 黑河中游水资源开发利用与管理的历史演变[J]. 冰川冻土, 2011, 33(3): 236-245.]
[6]  Shrestha K Y, Webster P J, Toma V E. An atmospheric-hydrologic forecasting scheme for the Indus River Basin[J]. Journal of Hydrometeorology, 2014, 15: 861-890.
[7]  Ba Jianwen, Ma Xiaoquan, Liu Zhenhua, et al. Exploration & analysis on causes of groundwater level rising in the basin of Zhangye[J]. Ground Water, 2010, 30(1): 34-37. [巴建文, 马小全, 刘振华, 等. 张掖盆地地下水位上升成因探析[J]. 地下水, 2010, 30(1): 34-37.]
[8]  Immerzeel W M, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328: 1382-1385.
[9]  Hu Xinglin, Xiao Honglang, Lan Yongchao, et al. Experimental study of calculation method of river seepage in middle and upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 460-468. [胡兴林, 肖洪浪, 蓝永超, 等. 黑河中上游段河道渗漏量计算方法的试验研究[J]. 冰川冻土, 2012, 34(2): 460-468.]
[10]  Ding Hongwei, Yao Jilu, He Jianghai. Environmental isotope characteristics and groundwater recharge in groundwater level rise area in Zhangye City[J]. Arid Land Geography, 2009, 32(1): 1-8. [丁宏伟, 姚吉禄, 何江海. 张掖市地下水位上升区环境同位素特征及补给来源分析[J]. 干旱区研究, 2009, 32(1): 1-8.]
[11]  Fowler H J, Archer D R. Conflicting signals of climate change in the Upper Indus Basin[J]. Journal of Climate, 2006, 19: 4276-4293.
[12]  Gao Qianzhao, Li Fuxing. Reasonable development and utilization of water resources in Heihe River basin[M]. Lanzhou: Gansu Science and Technology Press, 1990: 185-186. [高前兆, 李福兴. 黑河流域水资源合理开发利用[M]. 兰州: 甘肃科学技术出版社, 1990: 185-186.]
[13]  Li Jing, Liu Shiyin, Wei Junfeng, et al. Snow cover dynamics and snowmelt runoff modeling in the Toxkan River basin, source region of Tarim River, Xinjiang[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1508-1516. [李晶, 刘时银, 魏俊峰, 等. 塔里木河源区托什干河流域积雪动态及融雪径流模拟与预估[J]. 冰川冻土, 2014, 36(6): 1508-1516.]
[14]  Ma Guoxia, Tian Yujun. Study on risk aversion of ecology-economy system of Zhangye Oasis after water allocation of Heihe River[J]. Journal of Arid Land Resources and Environment, 2006, 20(4): 61-66. [马国霞, 田玉军. 黑河分水后张掖绿洲“生态-经济”系统风险规避研究[J]. 干旱区资源与环境, 2006, 20(4): 61-66.]
[15]  Hartmann D L, Klein Tank A M G, Rusticucci M, et al. Observations: atmosphere and surface[M]//Climate change 2013: the physical basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2013: 159-254.
[16]  IPCC. Summary for policymakers[M]//Managing the risk of extreme events and disasters to advance climate change adaptation. New York: Cambridge University Press, 2012: 1-19.
[17]  Wei Zhi, Jin Huijun, Lan Yongchao, et al. Changes analysis of groundwater resources in the middle Heihe River using Kriging methods after water redistribution[J]. Arid Land Geography, 2009, 32(2): 196-203. [魏智, 金会军, 蓝永超, 等. 基于Kriging插值的黑河分水后中游地下水资源变化[J]. 干旱区地理, 2009, 32(2): 196-203.]
[18]  Li Fengping, Zhang Guangxin, Dong Liqin. Studies for impacts of climate change on hydrology and water resources[J]. Scientia Geographica Sinica, 2013, 33(4): 457-464. [李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究[J]. 地理科学, 2013, 33(4): 457-464.]
[19]  Xiang Guosheng. Risk assessment and regulation of groundwater development in Zhangye Basin of the middle reaches of Heihe River[D]. Lanzhou: Lanzhou University, 2011. [项国圣. 黑河中游张掖盆地地下水开发风险评价及调控[D]. 兰州: 兰州大学, 2011.]
[20]  Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of Northwest China[J]. Arid Land Geography, 2012, 35(1): 1-9. [陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1): 1-9.]
[21]  Cui Y, Shao J. The role of groundwater in arid/semiarid ecosystems, Northwest China[J]. Ground Water, 2005, 43(4): 471-477.
[22]  Yao Haijiao, Zhou Hongfei. Game analysis of water resources strategy among the central Asia countries around the Aral Sea basin[J]. Arid Land Geography, 2013, 36(4): 764-771. [姚海娇, 周宏飞. 中亚五国咸海流域水资源策略的博弈分析[J]. 干旱区地理, 2013, 36(4): 764-771.]
[23]  Schmidt S, Geyer T, Marei A, et al. Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods[J]. Journal of Hydrology, 2013, 502: 177-190.
[24]  Wu Di, Yan Denghua. Projection of future climate change over Huaihe River basin by multi-model ensembles under SRES scenarios[J]. Journal of Lake Sciences, 2013, 25(4): 565-575. [吴迪, 严登华. SRES情景下多模式集合对淮河流域未来气候变化的预估[J]. 湖泊科学, 2013, 25(4): 565-575.]
[25]  Simpson S C, Meixner T, Hogan J F. The role of flood size and duration on stream flow and riparian groundwater composition in a semi-arid basin[J]. Journal of Hydrology, 2013, 488: 126-135.
[26]  Wang Chenghai, Wu Yongping, Cui Yang. Evaluating the process of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468. [王澄海, 吴永萍, 崔洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.]
[27]  Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of American Meteorological Society, 2012. doi:10.1175/BAMS-D-11-00094.1.
[28]  Knutti R, Sedlacek J. Robustness and uncertainties in the new CMIP5 climate model projections[J]. Nature Climate Change, 2012. doi:10.1038/NCLIMATE1716.
[29]  Yin L, Zhou Y, Ge S, et al. Comparison and modification of methods for estimating evapotranspiration using diurnal groundwater level fluctuations in arid and semiarid regions[J]. Journal of Hydrology, 2013, 496: 9-16.
[30]  Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(11): 747-756.
[31]  Nie Zhenlong. Study on groundwater circulation and renewability in the middle reaches of Heihe River valley, Northwest China[D]. Beijing: Chinese Academy of Geological Sciences, 2004. [聂振龙. 黑河干流中游盆地地下水循环及更新性研究[D]. 北京: 中国地质科学院, 2004.]
[32]  Chen Minpeng, Lin Erda. Global greenhouse gas emission mitigation under representative concentration pathways scenarios and challenges to China[J]. Progressus Inquisitiones de Mutatione Climatis, 2010, 6(6): 436-442. [陈敏鹏, 林而达. 代表性浓度路径情景下的全球温室气体减排和对中国的挑战[J]. 气候变化研究进展, 2010, 6(6): 436-442.]
[33]  Yang Lingyuan, Wang Genxu. Variations of groundwater in Zhangye Basin of the middle reaches of the Heihe River in recent two decades[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 290-296. [杨玲媛, 王根绪. 近20 a来黑河中游张掖盆地地下水动态变化[J]. 冰川冻土, 2005, 27(2): 290-296.]
[34]  Guo Y, Dong W J, Ren F M, et al. Surface air temperature simulations over China with CMIP5 and CMIP3[J]. Advances in Climate Change Research, 2013, 4(3): 145-152.
[35]  Cao Yanping, Nan Zhuotong, Hu Xinglin. Changes of groundwater storage in the Heihe River basin derived from GRACE gravity satellite data[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 179-188. [曹艳萍, 南卓铜, 胡兴林. 利用GRACE重力卫星数据反演黑河流域地下水变化[J]. 冰川冻土, 2012, 34(3): 179-188.]
[36]  Chen Xiaochen, Xu Ying, Xu Chonghai, et al. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(3): 217-225. [陈晓晨, 徐影, 徐崇海, 等. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3): 217-225.]
[37]  Wang Genxu, Yang Lingyuan, Chen Ling, et al. Impacts of land use changes on groundwater resources in the Heihe River basin[J]. Acta Geographica Sinica, 2005, 60(5): 456-466. [王根绪, 杨玲媛, 陈玲, 等. 黑河流域土地利用变化对地下水资源的影响[J]. 地理学报, 2005, 60(5): 456-466.]
[38]  Xu Ying, Xu Chonghai. Preliminary assessment of simulation of climate changes over China by CMIP5 multi-models[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6): 489-494.
[39]  Zhou Jian, Li Xin, Wang Genxu, et al. The spatio-temporal variation analysis of groundwater and response to land-use change in the middle reaches of the Heihe River basin[J]. Journal of Natural Resources, 2009, 24(3): 498-506. [周剑, 李新, 王根绪, 等. 黑河流域中游地下水时空变异性分析及其对土地利用变化的响应[J]. 自然资源学报, 2009, 24(3): 132-140.]
[40]  Xu Chonghai, Xu Ying. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-models ensemble[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6): 527-533.
[41]  Liu Yuanpu, Li Suosuo, Lü Shihua, et al. An analysis of changing characteristics of snowfall in the East Asia based on CMIP5[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1345-1352. [柳媛普, 李锁锁, 吕世华, 等. 基于CMIP5的东亚地区降雪量变化特征分析[J]. 冰川冻土, 2014, 36(6): 1345-1352.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133