全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2015 

21世纪北半球中高纬度净初级生产力(NPP)变化及其与气候因子之间的关系

DOI: 10.7522/j.issn.1000-0240.2015.0036, PP. 327-335

Keywords: CMIP5,净初级生产力(NPP),气候变化,预估

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于CMIP5模式模拟的净初级生产力(NPP),对21世纪初期(2016-2035年),中期(2046-2065年)和末期(2080-2099年)三种排放情景下(RCP2.6、RCP4.5、RCP8.5)北半球中高纬度陆地NPP的时空变化进行了预估,并结合气候因子分析了NPP的变化和气温、降水、辐射之间的关系.结果表明相对于1986-2005年,21世纪北半球中高纬度陆地NPP呈增加趋势,RCP8.5情景下NPP的增加比RCP2.6和RCP4.5情景下更为明显;在季节变化上,北半球中高纬度NPP也以增加为主,且NPP在夏季,尤其是6月增加最显著.NPP对气候变化的响应存在明显的区域差异性,在中低排放情景下(RCP2.6、RCP4.5),相对于1986-2005年,21世纪北半球中高纬度地区温度显著影响的范围在逐渐缩小,而辐射和降水显著影响的范围在扩大.在高排放情景下(RCP8.5),21世纪北半球中高纬度地区NPP的变化主要与温度有关.

References

[1]  Zhang Jiutian, He Xiaojia, Shangguan Donghui, et al. Impact of intensive glacier ablation on arid regions of northwest China and its countermeasure[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 848-854. [张九天, 何霄嘉, 上官冬辉, 等. 冰川加剧消融对我国西北干旱区的影响及其适应对策[J]. 冰川冻土, 2012, 34(4): 848-854.]
[2]  Jorgenson M T, Racine C H, Walters J C, et al. Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J]. Climatic Change, 2001, 48(4): 551-579.
[3]  Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area change of frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 1-8. [王澄海, 靳双龙, 施红霞. 未来50年中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1): 1-8.]
[4]  Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI Fifth Assessment Report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076. [沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068-1076.]
[5]  Sun Zhizhong, Wu Guilong, Yun Hanbo, et al. Permafrost degradation under an embankment of the Qinghai-Tibet Railway in the southern limit of permafrost[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 767-771. [孙志忠, 武贵龙, 贠汉伯, 等. 多年冻土南界附近青藏铁路路基下的冻土退化[J]. 冰川冻土, 2014, 36(4): 767-771.]
[6]  Zhu Xianyun, Su Buda, Huang Jinlong, et al. Simulation of climatic change in Yunnan Province and RCP4.5 scenario projected trend by CCLM[J]. Resources and Environment in the Yangtze Basin, 2015, 24(3): 476-481. [朱娴韵, 苏布达, 黄金龙, 等. 云南气候变化高分辨率模拟与RCP4.5情景预估[J]. 长江流域资源与环境, 2015, 24(3): 476-481.]
[7]  Yin Guo'an, Niu Fujun, Lin Zhanju, et al. The distribution characteristics of permafrost along the Qinghai-Tibet Railway and their response to environment change[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 772-781. [尹国安, 牛富俊, 林战举, 等. 青藏铁路沿线多年冻土分布特征及其对环境变化的响应[J]. 冰川冻土, 2014, 36(4): 772-781.]
[8]  Giorgi F, Mearns L O. Probability of regional climate change based on the reliability ensemble averaging (REA) method[J]. Geophysical Research Letters, 2003, 30(12). doi:10.1029/2003GL017130.
[9]  Li Suosuo, Lü Shihua, Zhang Yongjun, et al. The change of global terrestrial ecosystem net primary production (NPP) and its response to climate change in CMIP5[J]. Theoretical and Applied Climatology, 2014. doi:10.1007/s00704-014-1242-8.
[10]  Mao Weiyi, Fan Jing, Shen Yongping, et al. Variations of extreme flood of the rivers in Xinjiang region and some typical watersheds from Tianshan Mountains and their response to climate change in recent 50 years[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1037-1046. [毛炜峄, 樊静, 沈永平, 等. 近50 a来新疆区域与天山典型流域极端洪水变化特征及其对气候变化的响应[J]. 冰川冻土, 2012, 34(5): 1037-1046.]
[11]  Slater A G, Lawrence D M. Diagnosing present and future permafrost from climate models[J]. Journal of Climate, 2013, 26(15): 5608-5623.
[12]  Wang Suping, Duan Haixia, Feng Jianying. Drought events and its influence in autumn of 2014 in China[J]. Journal of Arid Meteorology, 2014, 32(6): 1031-1039. [王素萍, 段海霞, 冯建英. 2014年秋季全国干旱状况及其影响与成因[J]. 干旱气象, 2014, 32(6): 1031-1039.]
[13]  Hua Wenjian, Chen Haishan. Response of land surface processes to global warming and its possible mechanism based on CMIP3 multi-model ensemble[J]. Chinese Journal of Atmospheric Science, 2011, 35(1): 121-133. [华文剑, 陈海山. 陆面过程对全球变暖的响应及其可能机制: 基于CMIP3的多模式集合分析[J]. 大气科学, 2011, 35(1): 121-133.]
[14]  Benestad R E. Climate change scenarios for northern Europe from multi-model IPCC AR4 climate simulations[J]. Geophysical Research Letter, 2005, 32(17). doi:10.1029/2005GL023401.
[15]  Xiao Cunde, Qing Dahe, Ren Jiawen, et al. Progress of mass balance study on glaciers in the Arctic[J]. Journal of Glaciology and Geocryology, 1999, 21(3): 200-206. [效存德, 秦大河, 任贾文, 等. 环北极地区冰川(盖)物质平衡研究进展[J]. 冰川冻土, 1999, 21(3): 200-206.]
[16]  Yang Kang. The progress of Greenland Ice Sheet surface ablation research[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 101-109. [杨康. 格陵兰冰盖表面消融研究进展[J]. 冰川冻土, 2013, 35(1): 101-109.]
[17]  Xu Ying, Gao Xuejie, Giorgi F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections[J]. Climate Research, 2010, 41(1): 61-81.
[18]  Zhao Qiudong, Ye Baisheng, Ding Yongjian, et al. Hydrological process of a typical catchment in cold region: Simulation and analysis[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 595-605. [赵求东, 叶柏生, 丁永建, 等. 典型寒区流域水文过程模拟及分析[J]. 冰川冻土, 2011, 33(3): 595-605.]
[19]  Giorgi F, Mearns L O. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the 'Reliability Ensemble Averaging (REA)’ method[J]. Journal of Climate, 2002, 15(10): 1141-1158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133