全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2000 

古里雅浅孔冰芯所记录的夏季风盛行时δ18O与海温以及与500hPa高度场的关系

, PP. 289-297

Keywords: 古里雅冰芯,(δ18O)max,SST,500hPa环流,相关关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原古里雅冰帽浅孔冰芯中(δ18O)max代表该区夏季风盛行时的温度状况,它与全球海温(SST)、北半球500hPa高度之间的相关关系被分析.对冰芯中(δ18O)max产生重要影响的海洋相关区均位于海洋的洋流区或洋流汇合区.它们分别在赤道东太平洋、太平洋西风漂流、东印度洋热池、莫桑比克海流、北大西洋海流、加那利海流和大西洋赤道海流.其中位于低纬度海洋相关区的SST与冰芯中δ18Omax呈负相关关系,即当这些海区的SST升高(或降低)时,古里雅冰帽浅孔冰芯中(δ18O)max减小(或增大).位于中纬度海洋相关区的SST与冰芯中(δ18O)max呈正相关关系,即当这些海区的SST升高(或降低)时,古里雅冰帽浅孔冰芯中(δ18O)max增大(或减小);对(δ18O)max产生重要影响的500hPa高度上的相关区分别位于中低纬度大洋上的副热带高压区和巴尔喀什湖长波槽区.这些相关区的高度均与冰芯中(δ18O)max存在显著的负相关关系,即当这些相关区的高度值增加(或降低)时,冰芯中(δ18O)max减小(或增大).其影响机制表现为不同水汽来源向古里雅地区输送的差异.欧洲脊和贝加尔湖脊的强度与(δ18O)max存在显著的正相关关系,即当高压脊加强(或减弱)时,冰芯中(δ18O)max增大(或减小).它们对(δ18O)max的影响表现为长波槽脊的调整,从而间接地影响水汽向古里雅地区的输送.

References

[1]  Keene W C, Galloway J N, Holden Jr J D. Measurement of weak organic acidity in precipitation from remote areas of the world[J]. Journal of Geophysical Research, 1983, 88 (C9): 5122~5130.
[2]  Hurrell J W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation [J]. Science, 1995, 269: 676-679.
[3]  Keene W C, Galloway J N. Organic acidity in precipitation of North America[J]. Atmospheric Environment, 1984, 18: 2491~2497.
[4]  Keene W C, Galloway J N. Considerations regarding sources for formic and acetic acids in the troposphere[J]. Journal of Geophysical Research, 1986, 91 (D13): 14466~14474.
[5]  王美蓉. 华南地区高山酸沉降化学研究[J]. 环境科学学报,1992,12 (1): 37~47.
[6]  Barnston A G, He Y. Impacts of the NAO on U.S. and Canadian surface climate, implications for seasonal prediction//Proceedings of the 21st Annual Climate Diagnostics and Prediction Workshop, Alabama USA, 1996:34-37.
[7]  Jones P D, Conway D. Precipitation in the British Isles: An analysis of area-average data updated to 1995[J]. Int.J.Climatol., 1997, 17: 427-438. 3.0.CO;2-Q target="_blank">
[8]  Grundstr?m M, Linderholm H W, Klingberg J, et al. Urban NO2and NO pollution in relation to the North Atlantic Oscillation NAO [J]. Atmospheric Environment, 2011, 45: 883-888.
[9]  Brandimarte L, Baldassarre G D, Bruni G, et al. Relation between the North-Atlantic Oscillation and hydroclimatic conditions in Mediterranean areas [J]. Water Resource Manage, 2011, 25: 1269-1279.
[10]  Andrade C, Santos J A, Pinto J G, et al. Large-scale atmospheric dynamics of the wet winter 2009 2010 and its impact on hydrology in Portugal[J]. Climate Research, 2011,46:29-41.
[11]  Vicente-Serrano S M, Trigo R M, López-Moreno J I, et al. Extreme winter precipitation in the Iberian Peninsula in 2010: anomalies, driving mechanisms and future projections[J]. Climate Research, 2011, 46: 51-65.
[12]  Hurrell J W, Van Loon H. Decadal changes in the circulation of the Northern Hemisphere: Relation to surface temperature //Proceedings of the 20th Annual Climate Diagnostics Workshop, Seattle, Washington USA, 1995:292-295.
[13]  Hurrell J W. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature [J]. Geophysical Research Letters, 1996, 23(6): 665-668.
[14]  Yu Rucong, Zhou Tianjun. Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century [J]. Geophysical Research Letters, 2004,31: L12204.
[15]  Wei Fengying, Xie Yu, Mann M E. Probabilistic trend of anomalous summer rainfall in Beijing: Role of interdecadal variability [J]. Journal of Geophysical Research, 2008, 113:D20106.
[16]  Ding Yihui, Ma Henian. The present status and future of research of the East Asian monsoon[A]. The Recent Advances in Asian Monsoon Research—The Proceeding of P. R. China-Japan Cooperation Research Project on Asian Monsoon Mechanism[C]. Beijing: Meteorological Press, 1996. 1~14. 丁一汇, 马鹤年. 东亚季风的研究现状[A]. 亚洲季风研究的新进展—中日亚洲季风机制合作研究论文集[C]. 北京: 气象出版社, 1996. 1~14.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133