全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2012 

祁连山区风吹雪对积雪质能过程的影响

, PP. 1084-1090

Keywords: 风吹雪,积雪质能过程,祁连山区

Full-Text   Cite this paper   Add to My Lib

Abstract:

风吹雪是山区积雪水文过程的重要组成部分.采用祁连山区冰沟流域2008年积雪期观测数据,通过对风吹雪实地观测分析、风吹雪的发生概率、风吹雪迁移以及风吹雪升华等分析,从野外观测、计算模拟两个方面对祁连山区风吹雪质能过程进行了详细探讨.结果表明位于流域海拔较高处(海拔4146m)的研究区垭口站,风吹雪现象较为显著,因之造成的积雪重新分布极为严重.垭口站风吹雪频发于冬季及初春融雪未发生时,积雪在风速作用下迁移量较大;而进入融雪期之后,因气温上升、雪面融化以及再冻结,风吹雪发生概率急剧减小.风吹雪在积雪升华中占有较大比重,2008年积雪期,垭口站风吹雪升华估算值约占积雪升华(包括雪面升华)的41.5%.

References

[1]  Kane D L, Hinzman L D, Benson C S, et al. Snow hydrology of a headwater arctic basin: 1. Physical measurements and process studies[J]. Water Resources Research, 1991, 27(6): 1099-1109.
[2]  Leonard K C, Maksym T. The importance of wind-blown snow redistribution to snow accumulation on Bellingshausen Sea ice[J]. Annals of Glaciology, 2011, 52(57): 271-278.
[3]  Pomeroy J W, Gray D M, Shook K R, et al. An evaluation of snow accumulation and ablation processes for land surface modelling[J]. Hydrological Processes, 1998, 12(15): 2339-2367. 3.0.CO;2-L target="_blank">
[4]  Pomeroy J W, Marsh P, Gray D M. Application of a distributed blowing snow model to the arctic[J]. Hydrological Processes, 1997, 11(11): 1451-1464. 3.0.CO;2-Q target="_blank">
[5]  Palm S P, Yang Y, Spinhirne J D, et al. Satellite remote sensing of blowing snow properties over Antarctica[J]. Journal of Geophysical Research, 2011, 116(16): D16123.
[6]  Pomeroy J W, Gray D M, Landine P G. The Prairie Blowing Snow Model-Characteristics, validation, operation[J]. Journal of Hydrology, 1993, 144(1-4): 165-192.
[7]  Groot Zwaaftink C D, L we H, Mott R, et al. Drifting snow sublimation: A high-resolution 3-D model with temperature and moisture feedbacks[J]. Journal of Geophysical Research, 2011, 116(D16): D16107.
[8]  Bowling L C, Pomeroy J W, Lettenmaier D P. Parameterization of blowing-snow sublimation in a macroscale hydrology model[J]. Journal of Hydrometeorology, 2004, 5(5): 745-762. 2.0.CO;2 target="_blank">
[9]  Liston G E , Elder K. A distributed snow-evolution modeling system (SnowModel)[J]. Journal of Hydrometeorology, 2006, 7(6): 1259-1276.
[10]  Lehning M, Volksch I, Gustafsson D, et al. ALPINE 3D: a detailed model of mountain surface processes and its application to snow hydrology[J]. Hydrological Processes, 2006, 20(10): 2111-2128 DI 10.1002/hyp.
[11]  Wang Zhonglong, Zhang Zhizhong. Regionalization of snow drift in China[J]. Journal of Mountain Research, 1999, 17(4): 312-317. [王中隆, 张志忠. 中国风吹雪区划 [J]. 山地学报, 1999, 17(4): 312-317.]
[12]  Li Chi, Zhu Huiwen, Gao Yu. Studied on erosive mechanisms of snowdrift in cold regions highway[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 784-790. [李驰, 朱文会, 高瑜. 寒区公路风吹雪害的融雪侵蚀破坏机理研究[J]. 冰川冻土, 2011, 33(4): 784-790.]
[13]  Dong Zhi, Li Hongli, Zhuo Hejun, et al. Effect of vegetation height and coverage on snow drift on the typical grassland in Xilin Gol, Inner Mongolia[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1106-1110. [董智, 李红丽, 左合君, 等. 锡林郭勒典型草原植被高度和盖度对风吹雪的影响[J]. 冰川冻土, 2010, 32(6): 1106-1110.]
[14]  Liu Honghu, Lin Yan. Change trend and temporal-spatial distribution of snowdrift in China[J]. Arid Zone Research, 2005, 22(1): 125-129. [刘洪鹄, 林燕. 中国风雪流的变化趋势和时空分布规律[J]. 干旱区研究, 2005, 22(1): 125-129.]
[15]  Li Hongyi, Wang Jian, Bai Yunjie, et al. The snow hydrological processes during a representative snow cover period in Binggou watershed in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 293-300. [李弘毅, 王建, 白云洁, 等. 黑河上游冰沟流域典型积雪期水文情势[J]. 冰川冻土, 2009, 31(2): 293-300.]
[16]  Yang Zhenniang, Yang Zhihuai, Zhang Xuecheng. Runoff and its generation model of cold region in Binggou basin of Qilian mountain//Memoirs of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, 1992, 7: 91-100. [杨针娘, 杨志怀, 张学成. 祁连山冰沟寒区径流及产流模式//中国科学院兰州冰川冻土研究所集刊, 1992, 7: 91-100.]
[17]  Chen Qian, Chen Tianyu, Zhang Yixian. Analyses of energy field characteristics and precipitation in Qilian mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1046-1054. [陈乾, 陈添宇, 张逸轩. 祁连山区能量场特征与降水分布的关系分析[J]. 冰川冻土, 2011, 33(5): 1046-1054.]
[18]  Li Yanying, Zhang Qiang, Xu Xia, et al. Relationship between precipitation and terrain over the Qilian Mountains and their ambient areas[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 52-61. [李岩瑛, 张强, 许霞, 等. 祁连山及周边地区降水与地形的关系[J]. 冰川冻土, 2010, 32(1): 52-61.]
[19]  Li X, Li X, Li Z, et al. Watershed allied telemetry experimental research[J]. Journal of Geophysical Research, 2009, 114: D22103.
[20]  Schmidt R A. Transport rate of drifting snow and the mean wind-speed profile[J]. Boundary-layer Meteorology, 1986, 34(3): 213-241.
[21]  Pomeroy J W. Wind Transport of Snow [M]. University of Saskatchewan, Agriculture Engineering, 1988: 1-246.
[22]  Liston G E, Elder K. A distributed snow-evolution modeling system (SnowModel)[J]. Journal of Hydrometeorology, 2006, 7(6): 1259-1276.
[23]  Li L, Pomeroy J W. Estimates of threshold wind speeds for snow transport using meteorological data[J]. Journal of Applied Meteorology, 1997, 36(3): 205-213. 2.0.CO;2 target="_blank">
[24]  Li L, Pomeroy J W. Probability of occurrence of blowing snow[J]. Journal of Geophysical Research-Atmospheres, 1997, 102(D18): 21955-21964.
[25]  Essery R, Li L, Pomeroy J. A distributed model of blowing snow over complex terrain[J]. Hydrological Processes, 1999, 13(14-15): 2423-2438. 3.0.CO;2-U target="_blank">
[26]  Hood E, Williams M, Cline D. Sublimation from a seasonal snowpack at a continental, mid-latitude alpine site[J]. Hydrological Processes, 1999, 13(12-13): 1781-1797. 3.0.CO;2-C target="_blank">
[27]  Cline D W. Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site[J]. Water Resources Research, 1997, 33(4): 689-701.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133